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1  INTRODUCTION 

 

1.1  Overview 

The classical multidimensional 𝐿2-Hardy inequality (in the Euclidean space 

ℝ𝑛) asserts that for 𝑛 ≥ 3  

 

 ∫
ℝ𝑛
|∇𝑢|2𝑑𝑥 ≥ |

𝑛−2

2
|
2

∫
ℝ𝑛

|𝑢|2

|𝑥|2
𝑑𝑥, ∀𝑢 ∈ 𝐶0

∞(ℝ𝑛), (1.1) 

 

where the constant |
𝑛−2

2
|
2
 is sharp, ∇ is the usual Euclidean gradient, and |𝑥| =

√𝑥1
2 +⋯+ 𝑥𝑛

2. 

It has many applications in different areas such as the spectral theory, that 

leads to the lower bounds for the quadratic form associated with the Laplace operator, 

for instance. It is also related to many other fields, for example, the notable one is the 

uncertainty principle. The uncertainty principle in physics is a fundamental concept 

going back to Heisenberg's work on quantum mechanics [1, 2] as well as to its 

mathematical justification by Hermann Weyl [3]. In the Euclidean setting for all 

real-valued functions 𝑢 ∈ 𝐶0
∞(ℝ𝑛) it can be defined as  

 

 (∫
ℝ𝑛
|∇𝑢|2𝑑𝑥)(∫

ℝ𝑛
|𝑥|2|𝑢|2𝑑𝑥) ≥

𝑛2

4
(∫
ℝ𝑛
|𝑢|2𝑑𝑥)

2
, (1.2) 

 

where 𝑛2/4 is optimal. Inequality (1.2) is a direct consequence of inequality (1.1). 

There are well-known surveys on the mathematical aspects of uncertainty principles 

by Fefferman [4] and by Folland and Sitaram [5]. Note that Ciatti, Ricci and Sundari 

[6] showed the uncertainty principle can be also derived without the Hardy 

inequalities. 

One of the interesting extensions of the Hardy inequality is the so-called 

Rellich inequality, which was introduced by Rellich [7] which is in the form  

 

 ∫
ℝ𝑛
|Δ𝑢|2𝑑𝑥 ≥

𝑛2(𝑛−4)2

16
∫
ℝ𝑛

|𝑢|2

|𝑥|4
𝑑𝑥, 𝑛 ≥ 5, (1.3) 

 

where the constant is sharp. We can refer, for instance, to Davies and Hinz [8] (see 

also Brézis and Vázquez [9]) for further history and later extensions, including the 

derivation of sharp constants. 

There is now a whole scope of related inequalities playing fundamental roles in 

different branches of mathematics, in particular, in the theory of linear and nonlinear 

partial differential equations. For instance, the analysis of more general weighted 

Hardy-Sobolev type inequalities has also a long history, initiated by Caffarelli, Kohn 

and Nirenberg [10] as well as by Brézis and Nirenberg in [11], and then Brézis and 

Lieb [12] with a mixture with Sobolev inequalities, Brézis and Vázquez in Section 4 

[9], [13] with many subsequent works in this direction. On this subject, we refer to 

the work of Hoffmann-Ostenhof and Laptev [14] and to references therein. 
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The pioneers of the subelliptic ideas of the analysis on the Heisenberg group 

were Folland and Stein [15], and consistent development of this theory by Folland 

[16] had led to the foundations for analysis on the stratified groups (or homogeneous 

Carnot groups). Furthermore, Rothschild and Stein extended this result for general 

Hörmander's operators. Moreover, the fundamental book [17] in 1982 titled Hardy 

spaces on homogeneous groups, by Folland and Stein laid down foundations for the 

'anisotropic' analysis on general homogeneous groups, i.e. Lie groups equipped with a 

compatible family of dilations. Such groups are necessarily nilpotent, and the class of 

homogeneous groups almost covers the whole class of nilpotent Lie groups including 

the classes of stratified, and more generally, graded groups. 

The study of the subelliptic functional estimates has also begun more than 

couple decades ago due to their importance for many questions involving subelliptic 

partial differential equations, unique continuation, sub-Riemannian geometry, 

subelliptic spectral theory, etc. As expected, for the first time, the subelliptic Hardy 

inequality was obtained to the most important example of the Heisenberg group by 

Garofalo and Lanconelli [18]. 

In recent years, the subelliptic functional inequalities and related analysis on 

the homogeneous groups have been a topic of intensive research summarised in the 

very recent appearing book titled Hardy inequalities on homogeneous groups by 

Ruzhansky and Suragan [19]. This book covers the most recent developments of the 

subelliptic functional inequalities on the Heisenberg groups, the stratified Lie groups, 

the graded Lie groups, and the homogeneous groups. Honourably, I would like to 

emphasize that some of my works with Ruzhansky and Suragan are also included in 

this book, and listed as the contributors for this book. 

This PhD thesis is devoted to studying the research developments at the 

intersection of two subjects such as Hardy inequalities and the noncommutative 

analysis in the setting of the stratified Lie groups (homogeneous Carnot groups). 

More broad details of this theme can be founded the recent 'International 

award-winning' book called 'Hardy inequalities on Homogeneous Groups' by 

Ruzhansky and Suragan. Topics treated in this PhD thesis as follow: 

1 Geometric Hardy and Hardy-Sobolev inequalities on the stratified groups.  

In this direction, we study the geometric Hardy and Hardy-Sobolev inequalities on 

the half-spaces by the formula  

 

∫
ℍ+
|∇𝐻𝑢|

2𝑑𝜉 ≥
1

4
∫
ℍ+

𝒲(𝜉)2

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)2
|𝑢|2𝑑𝜉, 

and  

 

(∫
ℍ+
|∇𝐻𝑢|

2𝑑𝜉 −
1

4
∫
ℍ+

𝒲(𝜉)2

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)2
|𝑢|2𝑑𝜉)

1/2

≥ 𝐶 (∫
ℍ+
|𝑢|2𝑑𝜉)

𝑄−2
2𝑄

, 

 

where 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)  is the Euclidean distance to the boundary and the angle 

function  
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 𝒲(𝜉):= (∑𝑛𝑖=1 〈𝑋𝑖(𝜉), 𝜈〉
2 + 〈𝑌𝑖(𝜉), 𝜈〉

2)
1

2. 
 

As a result, we prove the conjecture in the paper [20]. Also, we present 𝐿2 and 𝐿𝑝 

versions of the (subelliptic) geometric Hardy inequalities in half-spaces and convex 

domains on general stratified groups. As a consequence, we have derived the 

Hardy-Sobolev inequality in the half-space on the Heisenberg group [21]. Moreover, 

the geometric Hardy inequality on th starshaped sets is established in [22]. 

2 Horizontal inequalities on the stratified groups. In the second direction, we 

study the following horizontal version of Hardy type inequalities  

 

∫
𝔾

|∇𝐻𝑢(𝑥)|
2𝑑𝑥 ≥ (

𝑁 − 2

2
)
2

∫
𝔾

|𝑢(𝑥)|2

|𝑥′|2
𝑑𝑥, 

 

where | ⋅ | is the Euclidean norm and ∇𝐻 is a horizontal gradient. As a result, the 

version of horizontal weighted Hardy-Rellich type inequalities was obtained on the 

stratified Lie groups as a consequence of this inequality Sobolev type spaces are 

defined on stratified Lie groups and the embedding theorems are proved for these 

functional spaces. Also, we have obtained the subelliptic Picone type identities, as a 

result, we proved the Hardy and Rellich type inequalities for the anisotropic 

𝑝-sub-Laplacians. Moreover, analogues of Hardy type inequalities with multiple 

singularities and many-particle Hardy type inequalities are obtained on the stratified 

groups, [23, 24]. 

3 Hardy and Rellich type inequalities and the sub-Laplacian fundamental 

solutions. In the third direction, we investigate the following type of Hardy 

inequalities  

 

∫
𝔾

|∇𝐻𝑢(𝑥)|
2 ≥ (

𝑄 − 2

2
)
2

∫
𝔾

|𝑢(𝑥)|2

(𝑑(𝑥))2
𝑑𝑥, 

 

where 𝑄 is the homogeneous dimension of the stratified group 𝔾 and 𝑑(𝑥) is the 

so-called ℒ-gauge, which is a particular homogeneous quasi-norm obtained from the 

fundamental solution of the sub-Laplacian. As a result, generalised weighted 

𝐿𝑝 -Hardy, 𝐿𝑝 -Rellich, and 𝐿𝑝 -Caffarelli-Kohn-Nirenberg type inequalities with 

boundary terms are obtained on the stratified groups. As consequences, most of the 

Hardy type inequalities and the Heisenberg-Pauli-Weyl type uncertainty principles on 

the stratified groups are recovered. Moreover, a weighted 𝐿2-Rellich type inequality 

with the boundary term is obtained. We also present Hardy and Rellich inequalities 

for the sub-Laplacians in terms of their fundamental solutions on the quaternion 

Heisenberg group [25, 26]. 

4 Weighted Hardy and Rellich type inequalities for general vector fields. In 

this direction, we study the weighted Hardy and Rellich inequalities for general 

vector fields without a group structure as  
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 ∫
Ω
𝑊(𝑥)|∇𝑋𝑢|

𝑝𝑑𝑥 ≥ ∫
Ω
𝐻(𝑥)|𝑢|𝑝𝑑𝑥, ∀𝑢 ∈ 𝐶0

1(Ω), 

 

and  

 

 ∫
Ω
𝑊(𝑥)|ℒ𝑋𝑢|

𝑝𝑑𝑥 ≥ ∫
Ω
𝐻(𝑥)|𝑢|𝑝𝑑𝑥, ∀𝑢 ∈ 𝐶0

∞(Ω). 

 

Here, we establish the weighted anisotropic Hardy and Rellich type inequalities with 

boundary terms for general (real-valued) vector fields. As consequences, we derive 

new as well as many of the fundamental Hardy and Rellich type inequalities which 

are known in different settings [27].  

Main results were published in the following journals: 

1 Sabitbek B., Suragan D. Horizontal Weighted Hardy–Rellich Type 

Inequalities on Stratified Lie Groups // Complex Analysis and Operator Theory. – 

2018, -V. 12, - P. 1469-1480. (Scopus, Web of Science, Q2) 

2 Sabitbek B., Suragan D. On green functions for Dirichelet sub-Laplacians on 

a Quaternion Heisenberg group // Mathematical Modelling of Natural Phenomena. – 

2018,  –V. 13, - No. 4. (Scopus, Web of Science, Q3) 

3 Ruzhansky M. Sabitbek B., Suragan D. Weighted Lp-Hardy and Lp-Rellich 

inequalities with boundary terms on stratified Lie groups // Revista Matematica 

Complutense. – 2019,  – Vol. 32, - Issue 1, - P. 19–35. (Scopus, Web of Science, 

Q1)  

4 Ruzhansky M. Sabitbek B., Suragan D. Weighted anisotropic Hardy and 

Rellich type inequalities for general vector fields // Nonlinear Differential Equations 

and Applications (NoDEA). – 2019, - V. 26, - No. 13. (Scopus, Web of Science, Q1 

5 Sabitbek B. Embedding theorem of Sobolev type spaces on stratified Lie 

groups // Mathematical Journal. - 2016, - V. 16, - No. 3(61), - P. 166-180. (ККСОН) 

6 Sabitbek B., Suragan D. Hardy and Rellich type inequalities on the complex 

affine group // Eurasian Mathematical Journal. - 2017, - V. 8, -No. 2, - P. 31-39. 

(ККСОН).  

7 Kalmenov T.Sh., Sabitbek B. On Hardy and Rellich type inequalities for the 

Grushin operator // Mathematical Journal. - 2018, - V. 18, - No. 2(68), - P. 133-142. 

(ККСОН) 

 

1.2  Homogeneous groups 

Let 𝔤 be a Lie algebra which always assumed real and finite dimensional, and 

𝔾 is the corresponding connected and simply-connected Lie group. The lower central 

series of 𝔤 is defined inductively by  

 

𝔤(1): = 𝔤, 𝔤(𝑗): = [𝔤, 𝔤(𝑗−1)]. 

 

If the lower central series of a Lie algebra 𝔤 terminates at 0 in a finite 

number of steps then this Lie algebra is called nilpotent. Moreover, if 𝔤(𝑟+1) = {0} 

and 𝔤(𝑟) ≠ {0}, then 𝔤 is said to be nilpotent of step 𝑟 . A Lie algebra 𝔾 is 

nilpotent (of step 𝑟) whenever its Lie algebra is nilpotent (of step 𝑟). If exp: 𝔤 → 𝔾 
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is the exponential map, by the Campbell-Hausdorff formula for 𝑋, 𝑌 ∈ 𝔤 sufficiently 

close to 0 we have  

 

 exp𝑋 exp𝑌 = exp𝐻(𝑋, 𝑌), 
 

where 𝐻(𝑋, 𝑌)  is the Campbell-Hausdorff series which is an infinite linear 

combination of 𝑋 and 𝑌 and their iterated commutators and 𝐻 is universal, i.e. 

independent of 𝔤, and that  

 

 𝐻(𝑋, 𝑌) = 𝑋 + 𝑌 +
1

2
[𝑋, 𝑌] + ⋯, 

 

where the dots indicate terms of order ≥ 3. 

If 𝔤 is nilpotent, the Campbell-Hausdorff series terminates after finitely many 

terms and defines a polynomial map from 𝑉 × 𝑉 to 𝑉, where 𝑉 is the underlying 

vector space of 𝔤. 

Altogether, we have the following useful properties:  

P r o p o s i t i o n  1 . 2 . 1  [Exponential map and Haar measure] Let 𝔾 be a 

connected and simply-connected nilpotent Lie group with Lie algebra 𝔤. Then: 

- The exponential map 𝑒𝑥𝑝 is a dimorphism from 𝔤 to 𝔾. Moreover, if 𝔾 is 

identified with 𝔤 via 𝑒𝑥𝑝, then the group law (𝑥, 𝑦) ↦ 𝑥𝑦 is a polynomial map.  

- If 𝜇 denotes a Lebesgue measure on 𝔤, then 𝜇 ∘ 𝑒𝑥𝑝−1 is a bi-invariant 

Haar measure on 𝔾.  

We refer to [19] for the proof of Proposition 1.2.1. 

D e f i n i t i o n  1 . 2 . 2  [Dilations on a Lie group] A family of dilations of a Lie 

algebra 𝔤 is a family of linear mappings  

 

 {𝛿𝑟: 𝑟 > 0} 
 

from 𝔤 to itself which satisfies:   

- the mappings are of the form  

 

𝛿𝑟 = 𝑒𝑥𝑝(𝐴 𝑙𝑜𝑔𝑟 ), 
 

where 𝐴 is a diagonalisable linear operator on 𝔤 with positive eigenvalues.  

- In particular, 𝛿𝑟𝑠 = 𝛿𝑟𝛿𝑠 for all 𝑟, 𝑠 > 0. If 𝛼 > 0 and {𝛿𝑟} is a family of 

dilations on 𝔤, then so is {𝛿𝑟}, where  

 

𝛿𝑟: = 𝛿𝑟𝛼 = 𝑒𝑥𝑝(𝛼 𝐴 𝑙𝑜𝑔 𝑟). 
 

By adjusting 𝛼 we can always assume that the minimum eigenvalue of 𝐴 is 

equal to 1.  

Let 𝒜  be the set of eigenvalues of 𝐴  and denote by 𝑊𝑎 ⊂ 𝔤  the 

corresponding eigenfunction space of 𝐴, where 𝑎 ∈ 𝒜. Then we have  
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 𝛿𝑟𝑋 = 𝑟
𝑎𝑋  for   𝑋 ∈ 𝑊𝑎. 

 

If 𝑋 ∈ 𝑊𝑎 and 𝑌 ∈ 𝑊𝑏, then  

 

 𝛿𝑟[𝑋, 𝑌] = [𝛿𝑟𝑋, 𝛿𝑟𝑌] = 𝑟
𝑎+𝑏[𝑋, 𝑌] 

 

and thus [𝑊𝑎,𝑊𝑏] ⊂ 𝑊𝑎+𝑏 . In particular, since 𝑎 ≥ 1 for 𝑎 ∈ 𝒜 , we see that 

𝔤(𝑗) ⊂⊕𝑎≥𝑗 𝑊𝑎 . Since the set 𝒜  is finite, it follows that 𝔤(𝑗) = {0}  for 𝑗 

sufficiently large. Thus, we obtain:  

P r o p o s i t i o n  1 . 2 . 3  [Lie algebras with dilations are nilpotent] If a Lie 

algebra 𝔤 admits a family of dilations then it is nilpotent.  

However, not all nilpotent Lie algebras admit a dilation structure: an example 

of a (one-dimensional) nilpotent Lie algebra that does not allow any compatible 

family of dilations was constructed by Dyer [28]. 

D e f i n i t i o n  1 . 2 . 4  [Graded Lie algebras and groups] A Lie algebra 𝔤 is 

called graded if it is endowed with a vector space decomposition (where all but 

finitely many of the 𝑉𝑘 's are 0)  

 

 𝔤 =⊕𝑗=1
∞ 𝑉𝑗   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  [𝑉𝑖 , 𝑉𝑗] ⊂ 𝑉𝑖+𝑗 . 

 

Consequently, a Lie group is called graded if it is a connected and simply-connected 

Lie group whose Lie algebra is graded.   

D e f i n i t i o n  1 . 2 . 5  [Stratified Lie algebras and groups] A graded Lie 

algebra 𝔤 is called stratified if 𝑉1 generates 𝔤 as an algebra. In this case, if 𝔤 is 

nilpotent of step 𝑚 we have  

 

 𝔤 =⊕𝑗=1
𝑚 𝑉𝑗 , [𝑉𝑗 , 𝑉1] = 𝑉𝑗+1, 

 

and the natural dilations of 𝔤 are given by  

 

 𝛿𝑟(∑
𝑚
𝑘=1 𝑋𝑘) = ∑

𝑚
𝑘=1 𝑟

𝑘𝑋𝑘 , (𝑋𝑘 ∈ 𝑉𝑘). 
 

Consequently, a Lie group is called stratified if it is connected and simply-connected 

Lie group whose Lie algebra is stratified.  

D e f i n i t i o n  1 . 2 . 6  [Homogeneous groups] Let 𝛿𝑟 be dilations on 𝔾. We 

say that a Lie group 𝔾 is a homogeneous group if:   

- It is a connected and simply-connected nilpotent Lie group 𝔾 whose Lie 

algebra 𝔤 is endowed with a family of dilations {𝛿𝑟}.  

- The maps 𝑒𝑥𝑝 ∘ 𝛿𝑟 ∘ 𝑒𝑥𝑝
−1 are group automorphism of 𝔾.  

  

1.3  Stratified Lie groups 

D e f i n i t i o n  1 . 3 . 1  A Lie group 𝔾 = (ℝ𝑛,∘) is called a stratified (Lie) 

group if it satisfies the following conditions: 

(a) For some natural numbers 𝑁 + 𝑁2 +⋯+𝑁𝑟 = 𝑛, that is 𝑁 = 𝑁1, the 
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decomposition ℝ𝑛 = ℝ𝑁 ×…×ℝ𝑁𝑟  is valid, and for every 𝜆 > 0  the dilation 

𝛿𝜆: ℝ
𝑛 → ℝ𝑛 given by  

 

 𝛿𝜆(𝑥) ≡ 𝛿𝜆(𝑥′, 𝑥
(2), … , 𝑥(𝑟)):= (𝜆𝑥′, 𝜆2𝑥(2), … , 𝜆𝑟𝑥(𝑟)) 

 

is an automorphism of the group 𝔾. Here 𝑥′ ≡ 𝑥(1) ∈ ℝ𝑁  and 𝑥(𝑘) ∈ ℝ𝑁𝑘  for 

𝑘 = 2,… , 𝑟. 
(b) Let 𝑁 be as in (a) and let 𝑋1, … , 𝑋𝑁 be the left-invariant vector fields on 

𝔾 such that 𝑋𝑘(0) =
𝜕

𝜕𝑥𝑘
|0 for 𝑘 = 1,… ,𝑁. Then  

 

 𝑟𝑎𝑛𝑘(𝐿𝑖𝑒{𝑋1, … , 𝑋𝑁}) = 𝑛, 
 

for every 𝑥 ∈ ℝ𝑛, i.e. the iterated commutators of 𝑋1, … , 𝑋𝑁 span the Lie algebra 

of 𝔾.  

Here, we say that 𝑟 is called a step of 𝔾 and the left-invariant vector fields 

𝑋1, . . . , 𝑋𝑁 are called the (Jacobian) generators of 𝔾. The number  

 

 𝑄 = ∑𝑟𝑘=1 𝑘𝑁𝑘 , 𝑁1 = 𝑁, 
 

is called the homogeneous dimension of a stratified Lie group 𝔾. The second order 

differential operator  

 

 ℒ = ∑𝑁𝑘=1 𝑋𝑘
2,    𝑁1 = 𝑁, (1.4) 

 

is called the (canonical) sub-Laplacian on 𝔾. The sub-Laplacian ℒ is a left-invariant 

homogeneous hypoelliptic differential operator and it is known that ℒ is elliptic if 

and only if the step of 𝔾 is equal to 1. 

The hypoellipticity of ℒ means that for a distribution 𝑓 ∈ 𝒟′(Ω) in any open 

set Ω, if ℒ𝑓 ∈ 𝐶∞(Ω) then 𝑓 ∈ 𝐶∞(Ω). It is a special case of Hörmander's sum of 

squares theorem. 

The fact that the sub-Laplacian on a stratified Lie group 𝔾 has a unique 

fundamental solution 휀 was presented by Folland as follows  

 

 ℒ휀 = 𝛿, 
 

where 𝛿 denotes the Dirac distribution with singularity at the neutral element 0 of 

𝔾. The fundamental solution 휀(𝑥, 𝑦) = 휀(𝑦−1𝑥) is homogeneous of degree −𝑄 + 2 

and can be written in the form  

 

 휀(𝑥, 𝑦) = [𝑑(𝑦−1𝑥)]2−𝑄, (1.5) 

 

for some homogeneous 𝑑 which is called the ℒ-gauge. Thus, the ℒ-gauge is a 

symmetric homogeneous (quasi-) norm on the stratified group 𝔾 = (ℝ𝑛,∘, 𝛿𝜆), that 
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is,   

    - 𝑑(𝑥) > 0 if and only if 𝑥 ≠ 0,  

    - 𝑑(𝛿𝜆(𝑥)) = 𝜆𝑑(𝑥) for all 𝜆 > 0 and 𝑥 ∈ 𝔾,  

    - 𝑑(𝑥−1) = 𝑑(𝑥) for all 𝑥 ∈ 𝔾.  

 

We also recall that the standard Lebesgue measure 𝑑𝑥 on ℝ𝑛 is the Haar 

measure for 𝔾 (Proposition 1.6.6 [29]). The left-invariant vector field 𝑋𝑗 has an 

explicit form and satisfies the divergence theorem, see e.g. [29, P. 105-106] for the 

derivation of the exact formula: more precisely, we can write  

 

 𝑋𝑘 =
𝜕

𝜕𝑥′𝑘
+ ∑𝑟𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑎𝑘,𝑚

(𝑙)
(𝑥′, . . . , 𝑥(𝑙−1))

𝜕

𝜕𝑥𝑚
(𝑙). (1.6) 

 

We will also use the following notations  

 

 ∇𝐻: = (𝑋1, … , 𝑋𝑁) 
 

for the horizontal gradient,  

 

 d𝑖𝑣𝐻𝑣:= ∇𝐻 ⋅ 𝑣 

 

for the horizontal divergence,  

 

 ℒ𝑝𝑓:= d𝑖𝑣𝐻(|∇𝐻𝑓|
𝑝−2∇𝐻𝑓),    1 < 𝑝 < ∞, (1.7) 

 

for the horizontal 𝑝-Laplacian (or 𝑝-sub-Laplacian), and 

 

 |𝑥′| = √𝑥′1
2 +⋯+ 𝑥′𝑁

2  

 

for the Euclidean norm on ℝ𝑁 . 
The explicit representation (1.6) allows us to have the identity  

 

 d𝑖𝑣𝐻 (
𝑥′

|𝑥′|𝛾
) =

∑𝑁𝑗=1 |𝑥′|
𝛾𝑋𝑗𝑥′𝑗−∑

𝑁
𝑗=1𝑥′𝑗𝛾|𝑥′|

𝛾−1𝑋𝑗|𝑥′|

|𝑥′|2𝛾
=
𝑁−𝛾

|𝑥′|𝛾
 (1.8) 

 

 for all 𝛾 ∈ ℝ, |𝑥′| ≠ 0. 
 

1.3.1  Divergence theorem 

D e f i n i t i o n  1 . 3 . 2  A bounded open set 𝛺 ⊂ 𝔾 will be called an admissible 

domain if its boundary 𝜕𝛺 is piecewise smooth and simple, that is, it has no 

self-intersections. The condition for the boundary to be simple amounts to 𝜕𝛺 being 

orientable.  

We now recall the divergence formula in the form of Proposition 3.1 in [30]:  

T h e o r e m  1 . 3 . 3  Let 𝛺 ⊂ 𝔾 be an admissible domain. Let 𝑓𝑘 ∈ 𝐶
1(𝛺) ∩
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𝐶(𝛺), 𝑘 = 1,… , 𝑁. Then for each 𝑘 = 1,… , 𝑁, we have 

  

 ∫
𝛺
𝑋𝑘𝑓𝑘𝑑𝑧 = ∫𝜕𝛺 𝑓𝑘〈𝑋𝑘, 𝑑𝑧〉. (1.9) 

 

Consequently, we also have 

  

 ∫
𝛺
∑𝑁𝑘=1 𝑋𝑘𝑓𝑘𝑑𝑧 = ∫𝜕𝛺 ∑

𝑁
𝑘=1 𝑓𝑘〈𝑋𝑘 , 𝑑𝑧〉. (1.10) 

  

By using the divergence formula, analogues of Green's formulae were obtained 

in [30, P. 485-487] for general Carnot groups and in [31] for more abstract settings 

(without the group structure), for another formulation see also [32]. 

  

1.3.2  Green's identities for sub-Laplacians 

T h e o r e m  1 . 3 . 3  [Green's first and second formulae] Let 𝔾 be a stratified 

group and 𝛺 ⊂ 𝔾 be an admissible domain. Then we have the following Green first 

and second identities: 

   

- Let 𝑣 ∈ 𝐶1(𝛺) ∩ 𝐶(𝛺) and 𝑢 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺). Then  

 ∫
𝛺
((�̃�𝑣)𝑢 + 𝑣ℒ𝑢)𝑑𝜈 = ∫

𝜕𝛺
𝑣〈�̃�𝑢, 𝑑𝜈〉, (1.11) 

 

where ℒ is the sub-Laplacian on 𝔾 and where the vector field �̃�𝑢 is defined by  

 

 �̃�𝑢:= ∑
𝑁1
𝑘=1 (𝑋𝑘𝑢)𝑋𝑘. (1.12) 

  

- Let 𝑢, 𝑣 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺). Then  

 

 ∫
𝛺
(𝑢ℒ𝑣 − 𝑣ℒ𝑢)𝑑𝜈 = ∫

𝜕𝛺
(𝑢〈�̃�, 𝑑𝜈〉 − 𝑣〈�̃�𝑢, 𝑑𝜈〉). (1.13) 

  

  

1.3.3  Engel group 

A well-known stratified group with step three is the Engel group, which can be 

denoted by 𝔼. Topologically 𝔼 is ℝ4 with the group law of 𝔼, which is given by 

  

 𝑥 ∘ 𝑦 = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3 + 𝑃1, 𝑥4 + 𝑦4 + 𝑃2), 
 

where  

 𝑃1 =
1

2
(𝑥1𝑦2 − 𝑥2𝑦1), 

 𝑃2 =
1

2
(𝑥1𝑦3 − 𝑥3𝑦1) +

1

12
(𝑥1
2𝑦2 − 𝑥1𝑦1(𝑥2 + 𝑦2) + 𝑥2𝑦1

2). 

 

The left-invariant vector fields of 𝔼 are generated by the basis  
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 𝑋1 =
𝜕

𝜕𝑥1
−
𝑥2

2

𝜕

𝜕𝑥3
− (

𝑥3

2
−
𝑥1𝑥2

12
)

𝜕

𝜕𝑥4
, 

 𝑋2 =
𝜕

𝜕𝑥2
+
𝑥1

2

𝜕

𝜕𝑥3
+
𝑥1
2

12

𝜕

𝜕𝑥4
, 

 𝑋3 =
𝜕

𝜕𝑥3
+
𝑥1

2

𝜕

𝜕𝑥4
, 

 𝑋4 =
𝜕

𝜕𝑥4
. 

  

1.3.4  Heisenberg group 

Let us give a brief introduction of the Heisenberg group. Let ℍ𝑛 be the 

Heisenberg group, that is, the set ℝ2𝑛+1 equipped with the group law  

 

 𝜉 ∘ 𝜉:= (𝑥 + �̃�, 𝑦 + �̃�, 𝑡 + �̃� + 2∑𝑛𝑖=1 (�̃�𝑖𝑦𝑖 − 𝑥𝑖�̃�𝑖)), 
 

where 𝜉:= (𝑥, 𝑦, 𝑡) ∈ ℍ𝑛, 𝑥:= (𝑥1, … , 𝑥𝑛), 𝑦:= (𝑦1, … , 𝑦𝑛), and 𝜉−1 = −𝜉 is the 

inverse element of 𝜉 with respect to the group law. The dilation operation of the 

Heisenberg group with respect to the group law has the following form  

 

 𝛿𝜆(𝜉):= (𝜆𝑥, 𝜆𝑦, 𝜆
2𝑡)  for  𝜆 > 0. 

 

The Lie algebra 𝔥 of the left-invariant vector fields on the Heisenberg group ℍ𝑛 is 

spanned by  

 𝑋𝑖: =
𝜕

𝜕𝑥𝑖
+ 2𝑦𝑖

𝜕

𝜕𝑡
  for  1 ≤ 𝑖 ≤ 𝑛, 

  

 𝑌𝑖: =
𝜕

𝜕𝑦𝑖
− 2𝑥𝑖

𝜕

𝜕𝑡
  for  1 ≤ 𝑖 ≤ 𝑛, 

 

and with their (non-zero) commutator  

 

 [𝑋𝑖 , 𝑌𝑖] = −4
𝜕

𝜕𝑡
. 

 

The horizontal gradient of ℍ𝑛 is given by  

 

 ∇𝐻: = (𝑋1, … , 𝑋𝑛, 𝑌1, … , 𝑌𝑛), 
 

so the sub-Laplacian on ℍ𝑛 is given by  

 

 ℒ:= ∑𝑛𝑖=1 (𝑋𝑖
2 + 𝑌𝑖

2). 
  

1.3.5  Quaternion Heisenberg group 

Let ℍ  be the set of all quaternions 𝑥 = 𝑥0 + 𝑥1𝑖1 + 𝑥2𝑖2 + 𝑥3𝑖3 , where 

𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ ℝ and 1, 𝑖1, 𝑖2, 𝑖3 are the basis elements of ℍ with following rules 

of multiplication  
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𝑖1
2 = 𝑖2

2 = 𝑖3
2 = 𝑖1𝑖2𝑖3 = −1, 𝑖1𝑖2 = −𝑖2𝑖1 = 𝑖3, 𝑖2𝑖3 = −𝑖3𝑖2 = 𝑖1,
𝑖3𝑖1 = −𝑖1𝑖3 = 𝑖2. 

 

Let 𝑥 = 𝑥0 + 𝑥1𝑖1 + 𝑥2𝑖2 + 𝑥3𝑖3 ∈ ℍ. Then the real part of 𝑥 is the real number 𝑥0 

and the imaginary part of 𝑥  is the point (𝑥1, 𝑥2, 𝑥3) ∈ ℝ
3 . Also, the real and 

imaginary parts of 𝑥 are denoted by ℜ𝑥 and ℑ𝑥, respectively. It will be useful 

further to denote the imaginary parts such as  

 

ℑ1𝑥 = 𝑥1,    ℑ2𝑥 = 𝑥2,    ℑ3𝑥 = 𝑥3. 
 

The conjugate of 𝑥 is denoted by  

 

 𝑥 = 𝑥0 − 𝑥1𝑖1 − 𝑥2𝑖2 − 𝑥3𝑖3, 
 

and the modulus |𝑥| is defined by  

 

 |𝑥|2 = 𝑥𝑥 = ∑3𝑗=0 𝑥𝑗
2. 

 

The Grassmannian product (or the quaternion product) of 𝑥 and 𝑦 is defined by  

 

 𝑥𝑦 = (𝑥0𝑦0 − ℑ𝑥 ⋅ ℑ𝑦) + (𝑥0ℑ𝑦 + 𝑦0ℑ𝑥 + ℑ𝑥 × ℑ𝑦), 
 

where  

 ℑ𝑥 × ℑ𝑦 = det (
𝑖1 𝑖2 𝑖3
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

). 

 

Let ℍ𝑞 = ℍ×ℝ
3. Then ℍ𝑞 becomes a non-commutative (Lie) group with 

the group law  

  

(𝑥, 𝑡1, 𝑡2, 𝑡3) ∘ (𝑦, 𝜏1, 𝜏2, 𝜏3)
= (𝑥 + 𝑦, 𝑡1 + 𝜏1 − 2ℑ1(𝑦𝑥), 𝑡2 + 𝑦2 − 2ℑ2(𝑦𝑥), 𝑡3 + 𝜏3 − 2ℑ3(𝑦𝑥)), 

 

for all (𝑥, 𝑡), (𝑦, 𝜏) ∈ ℍ𝑞. We note that 𝑒 = (0,0,0,0) is the identity element of ℍ𝑞 

and the inverse of an element (𝑥, 𝑡1, 𝑡2, 𝑡3) ∈ ℍ𝑞 is (−𝑥,−𝑡1, −𝑡2, −𝑡3). The Haar 

measure on  coincides with the Lebesgue measure on ℍ×ℝ3 which is denoted by 

𝑑𝑥𝑑𝑡. Let 𝔥𝑞 be the Lie algebra of left invariant vector fields on ℍ𝑞. A basis of 𝔥𝑞 

is given by {𝑋0, 𝑋1, 𝑋2, 𝑋3} and {𝑇1, 𝑇2, 𝑇3}, where  

 

 𝑋0 =
𝜕

𝜕𝑥0
− 2𝑥1

𝜕

𝜕𝑡1
− 2𝑥2

𝜕

𝜕𝑡2
− 2𝑥3

𝜕

𝜕𝑡3
, 

 𝑋1 =
𝜕

𝜕𝑥1
+ 2𝑥0

𝜕

𝜕𝑡1
− 2𝑥3

𝜕

𝜕𝑡2
+ 2𝑥2

𝜕

𝜕𝑡3
, 

 𝑋2 =
𝜕

𝜕𝑥2
+ 2𝑥3

𝜕

𝜕𝑡1
+ 2𝑥0

𝜕

𝜕𝑡2
− 2𝑥1

𝜕

𝜕𝑡3
, 
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 𝑋3 =
𝜕

𝜕𝑥3
− 2𝑥2

𝜕

𝜕𝑡1
+ 2𝑥1

𝜕

𝜕𝑡2
+ 2𝑥0

𝜕

𝜕𝑡3
, 

 

 and  

 𝑇𝑘 =
𝜕

𝜕𝑡𝑘
,    𝑘 = 1,2,3. 

 

The Lie brackets of these vector fields are given by  

 

 [𝑋0, 𝑋1] = [𝑋3, 𝑋2] = 4𝑇1, 
 = [𝑋1, 𝑋3] = 4𝑇2, 
 = [𝑋2, 𝑋1] = 4𝑇3. 
 

Thus, the sub-Laplacian on ℍ𝑞 is given by  

 

 = ∑3𝑗=0 𝑋𝑗
2 = Δ𝑥 − 4|𝑥|

2Δ𝑡 − 4∑
3
𝑘=1 (𝑖𝑘𝑥 ⋅ ∇𝑥)

𝜕

𝜕𝑡𝑘
, (1.14) 

 

where  

 Δ𝑥 = ∑
3
𝑘=0

𝜕2

𝜕𝑥𝑘
2 ,    and    Δ𝑡 = ∑

3
𝑘=1

𝜕2

𝜕𝑡𝑘
2. 

 

Note that the fundamental solution of the sub-Laplacian on ℍ𝑞 was found by 

Tie and Wong in [33]. We restate their results in the following theorem. 

T h e o r e m  1 . 3 . 5  The fundamental solution 𝛤(𝜉) of the sub-Laplacian  on 

the quaternion Heisenberg group ℍ𝑞 is given by  

 

 𝛤(𝜉):= 𝛤(|𝑥|, 𝑡) =
2

(2𝜋)7/2|𝑥|2
∫
𝑆2

1

(|𝑥|2−𝑖(𝑡⋅𝑛))3
𝑑𝜎, (1.15) 

 

where 𝜉 = (𝑥, 𝑡) ∈ ℍ𝑞, 𝑛 = (𝑛1, 𝑛2, 𝑛3) is a point on the unit sphere 𝑆2 in ℝ3 

with centre at the origin, and 𝑑𝜎 is the surface measure on 𝑆2. That is,  

 

 ℒ𝛤𝜁 = −𝛿𝜁 , (1.16) 

 

where 𝛤𝜁(𝜉) = 𝛤(휁
−1 ∘ 𝜉) and 𝛿𝜁 is the Dirac distribution at 휁 ≡ (𝑦, 𝜏) ∈ ℍ𝑞.  
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2 GEOMETRIC HARDY AND HARDY-SOBOLEV TYPE 

INEQUALITIES 

 

In the Euclidean setting, a geometric Hardy inequality in a (Euclidean) convex 

domain Ω has the following form  

 

 ∫
Ω
|∇𝑢|2𝑑𝑥 ≥

1

4
∫
Ω

|𝑢|2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)2
𝑑𝑥, (2.1) 

 

for 𝑢 ∈ 𝐶0
∞(Ω) with the sharp constant 1/4. There is a number of studies related to 

this subject [34-39]. 

The Hardy inequality in the half-space on the Heisenberg group was shown by 

Luan and Young [40] in the form  

 

 ∫
ℍ+
|∇𝐻𝑢|

2𝑑𝜉 ≥
1

4
∫
ℍ+

|𝑥|2+|𝑦|2

𝑡2
|𝑢|2𝑑𝜉. (2.2) 

 

An alternative proof of this inequality was given by Simon Larson, where the author 

generalised it to any half-space of the Heisenberg group,  

 

∫
ℍ+
|∇𝐻𝑢|

2𝑑𝜉 ≥
1

4
∫
ℍ+

∑𝑛𝑖=1 〈𝑋𝑖(𝜉), 𝜈〉
2 + 〈𝑌𝑖(𝜉), 𝜈〉

2

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)2
|𝑢|2𝑑𝜉, 

 

where 𝑋𝑖 and 𝑌𝑖 (for 𝑖 = 1,… , 𝑛) are left-invariant vector fields on the Heisenberg 

group, 𝜈 is the Riemannian outer unit normal [41] to the boundary. Also, there is the 

𝐿𝑝-generalisation of the above inequality  

 

∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 ≥ (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

∑𝑛𝑖=1 |〈𝑋𝑖(𝜉), 𝜈〉|
𝑝 + |〈𝑌𝑖(𝜉), 𝜈〉|

𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉. 

 

 

This Chapter is devoted to present the geometric Hardy and Hardy-Sobolev 

inequalities on the stratified Lie group and the Heisenberg group, respectively. 

The main results of the chapter are as follow:   

Geometric 𝐿2-Hardy inequality on 𝔾+. Let 𝔾+ be a half-space of a stratified 

group 𝔾. Then for all 𝛽 ∈ ℝ we have  

 

∫
𝔾+
|∇𝔾𝑢|

2𝑑 ≥ −(𝛽2 + 𝛽)∫
𝔾+

∑𝑁𝑖=1 〈𝑋𝑖(𝑥), 𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2
|𝑢|2𝑑𝑥

+ 𝛽∫
𝔾+
∑

𝑁

𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)
|𝑢|2𝑑𝑥, 

 

for all 𝑢 ∈ 𝐶0
∞(𝔾+). 
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Geometric 𝐿𝑝-Hardy type inequality on 𝔾+. Let 𝔾+ be a half-space of a 

stratified group 𝔾. Then for all 𝛽 ∈ ℝ we have  

 

∫
𝔾+
∑

𝑁

𝑖=1

|𝑋𝑖𝑢|
𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|

𝑝
𝑝−1 + 𝛽)∫

𝔾+

∑𝑁𝑖=1 |〈𝑋𝑖(𝑥), 𝜈〉|
𝑝

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 

+𝛽(𝑝 − 1)∫
𝔾+
∑

𝑁

𝑖=1

(
|〈𝑋𝑖(𝑥), 𝜈〉|

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)
)
𝑝−2 𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)
|𝑢|𝑝𝑑𝑥, 

 

for all 𝑢 ∈ 𝐶0
∞(𝔾+), 1 < 𝑝 < ∞. 

Geometric 𝐿𝑝-Hardy inequality on 𝔾+. Let 𝔾+: = {𝑥 ∈ 𝔾: 〈𝑥, 𝜈〉 > 𝑑} be a 

half-space of a stratified group 𝔾. Then for all 𝑢 ∈ 𝐶0
∞(𝔾), 𝛽 ∈ ℝ and 𝑝 > 1 we 

have  

 

∫
𝔾+
|∇𝔾𝑢|

𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|
𝑝
𝑝−1 + 𝛽)∫

𝔾+

(∑𝑁𝑖=1 〈𝑋𝑖(𝑥), 𝜈〉
2)𝑝/2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 

+𝛽∫
𝔾+

 𝑝(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
|𝑢|𝑝𝑑𝑥. 

 

Geometric 𝐿2-Hardy inequality on a convex domain of 𝔾. Let Ω be a convex 

domain of a stratified group 𝔾. Then for 𝛽 < 0 we have  

 

∫
Ω

|∇𝔾𝑢|
2𝑑𝑥 ≥ −(𝛽2 + 𝛽)∫

Ω

∑𝑁𝑖=1 〈𝑋𝑖(𝑥), 𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω)2
|𝑢|2𝑑𝑥

+ 𝛽∫
Ω

∑

𝑁

𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω)
|𝑢|2𝑑𝑥 

 

for all 𝑢 ∈ 𝐶0
∞(Ω). 

Geometric 𝐿𝑝-Hardy type inequality on a convex domain of 𝔾. Let Ω be a 

convex domain of a stratified group 𝔾. Then for 𝛽 < 0 we have  

 

∫
Ω

∑

𝑁

𝑖=1

|𝑋𝑖𝑢|
𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|

𝑝
𝑝−1 + 𝛽)∫

Ω

∑𝑁𝑖=1 |〈𝑋𝑖(𝑥), 𝜈〉|
𝑝

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω)𝑝
|𝑢|𝑝𝑑𝑥 

+𝛽(𝑝 − 1)∫
Ω

∑

𝑁

𝑖=1

(
|〈𝑋𝑖(𝑥), 𝜈〉|

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω)
) |𝑢|𝑝𝑑𝑥, 

 

 for all 𝑢 ∈ 𝐶0
∞(Ω). 

 Geometric 𝐿𝑝-Hardy inequality on ℍ+. Let ℍ+: = {𝜉 ∈ ℍ𝑛: 〈𝜉, 𝜈〉 > 𝑑} be 

a half-space of the Heisenberg group. Then for all 𝑢 ∈ 𝐶0
∞(ℍ+) and 𝑝 > 1 we 

have  
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∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 ≥ (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉, 

 

where 𝒲(𝜉):= (∑𝑛𝑖=1 〈𝑋𝑖(𝜉), 𝜈〉
2 + 〈𝑌𝑖(𝜉), 𝜈〉

2)1/2 and the constant is sharp.  

 Geometric Hardy-Sobolev inequality on ℍ+. Let ℍ+: = {𝜉 ∈ ℍ𝑛: 〈𝜉, 𝜈〉 > 𝑑} 
be a half-space of the Heisenberg group. Then for all 𝑢 ∈ 𝐶0

∞(ℍ+) and 2 ≤ 𝑝 < 𝑄 

with 𝑄 = 2𝑛 + 1, there exists some 𝐶 > 0 such that we have  

 

(∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 − (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉)

1
𝑝

≥ 𝐶 (∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

1
𝑝∗

, 

 

where 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+):= 〈𝜉, 𝜈〉 − 𝑑 is the distance from 𝜉 to the boundary and 𝑝∗: =
𝑄𝑝/(𝑄 − 𝑝).  

Geometric 𝐿𝑝-Hardy inequality on starshaped sets of 𝔾. Let Ω be a 

starshaped set on a Carnot group. Then for every 𝛾 ∈ ℝ and 𝑝 > 1 we have the 

following Hardy inequality  

 

∫
Ω

|∇𝐻𝑓(𝑥)|
𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛾|

𝑝
𝑝−1 + 𝛾)∫

Ω

|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝

|〈𝑍(𝑥), 𝑛(𝑥)〉|𝑝
|𝑓(𝑥)|𝑝𝑑𝑥 

+𝛾∫
Ω

ℒ𝑝(〈𝑍(𝑥), 𝑛(𝑥)〉)

|〈𝑍(𝑥), 𝑛(𝑥)〉|𝑝−1
|𝑓(𝑥)|𝑝𝑑𝑥, 

 

for every function 𝑓 ∈ 𝐶0
∞(Ω).  

 

2.1  Geometric 𝑳𝟐-Hardy inequality on half-spaces 

In this section we present the geometric 𝐿2-Hardy inequality on the half-space 

of 𝔾. We define the half-space as follow  

 

𝔾+: = {𝑥 ∈ 𝔾: 〈𝑥, 𝜈〉 > 𝑑}, 
 

where 𝜈:= (𝜈1, … , 𝜈𝑟) with 𝜈𝑗 ∈ ℝ
𝑁𝑗 , 𝑗 = 1,… , 𝑟,  is the Riemannian outer unit 

normal to 𝜕𝔾+ (see [41]) and 𝑑 ∈ ℝ. The Euclidean distance to the boundary 𝜕𝔾+ 

is denoted by 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+) and defined as follows  

 

 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+) = 〈𝑥, 𝜈〉 − 𝑑. (2.3) 

 

Moreover, there is an angle function on 𝜕𝔾+ which is defined by Garofalo as  

 

 𝒲(𝑥) = √∑𝑁𝑖=1 〈𝑋𝑖(𝑥), 𝜈〉
2. (2.4) 
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T h e o r e m  2 . 1 . 1  Let 𝔾+ be a half-space of a stratified group 𝔾. Then for 

all 𝛽 ∈ ℝ we have  

 

∫
𝔾+
|𝛻𝔾𝑢|

2𝑑𝑥 ≥ 𝐶1(𝛽) ∫𝔾+
𝒲(𝑥)2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)2
|𝑢|2𝑑𝑥 (2.5) 

+𝛽∫
𝔾+
∑

𝑁

𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)
|𝑢|2𝑑𝑥, 

 

for all 𝑢 ∈ 𝐶0
∞(𝔾+) and where 𝐶1(𝛽):= −(𝛽

2 + 𝛽).  

R e m a r k  2 . 1 . 2  If 𝔾 has step 𝑟 = 2, then for 𝑖 = 1,… ,𝑁 we have the 

following left-invariant vector fields  

 

 𝑋𝑖 =
𝜕

𝜕𝑥′𝑖
+ ∑

𝑁2
𝑠=1 ∑

𝑁
𝑚=1 𝑎𝑚,𝑖

𝑠 𝑥′𝑚
𝜕

𝜕𝑥′′𝑠
, (2.6) 

 

where 𝑎𝑚,𝑖
𝑠  are the group constants (see, e.g. [42, Formula (2.14)] for the definition). 

Also we have 𝑥:= (𝑥′, 𝑥′′) with 𝑥′ = (𝑥′1, … , 𝑥𝑁′), 𝑥′′ = (𝑥′′1, … , 𝑥′′𝑁2), and also 

𝜈:= (𝜈′, 𝜈′′) with 𝜈′ = (𝜈′1, … , 𝜈𝑁′) and 𝜈′′ = (𝜈′′1, … , 𝜈′′𝑁2).  

C o r o l l a r y  2 . 1 . 3  Let 𝔾+ be a half-space of a stratified group 𝔾 of step 

𝑟 = 2. For all 𝛽 ∈ ℝ and 𝑢 ∈ 𝐶0
∞(𝔾+) we have  

 

∫
𝔾+
|𝛻𝔾𝑢|

2𝑑𝑥 ≥ 𝐶1(𝛽) ∫𝔾+
𝒲(𝑥)2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)2
|𝑢|2𝑑𝑥 (2.7) 

+𝐾(𝑎, 𝜈, 𝛽)∫
𝔾+

|𝑢|2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)
𝑑𝑥, 

 

where 𝐶1(𝛽):= −(𝛽
2 + 𝛽) and 𝐾(𝑎, 𝜈, 𝛽):= 𝛽 ∑

𝑁2
𝑠=1 ∑

𝑁
𝑖=1 𝑎𝑖,𝑖

𝑠 𝜈𝑠′′.   

P r o o f  o f  T h e o r e m  2 . 1 . 1 .  To prove inequality (2.5) we use the method of 

factorization. Thus, for any 𝑊:= (𝑊1, … ,𝑊𝑁), 𝑊𝑖 ∈ 𝐶
1(𝔾+) real-valued, which 

will be chosen later, by a simple computation we have  

 

 0 ≤ ∫
𝔾+
|∇𝔾𝑢 + 𝛽𝑊𝑢|

2𝑑𝑥 

           = ∫
𝔾+
|(𝑋1𝑢,… , 𝑋𝑁𝑢) + 𝛽(𝑊1, … ,𝑊𝑁)𝑢|

2𝑑𝑥 

 = ∫
𝔾+
|(𝑋1𝑢 + 𝛽𝑊1𝑢,… , 𝑋𝑁𝑢 + 𝛽𝑊𝑁𝑢)|

2𝑑𝑥 

 = ∫
𝔾+
∑𝑁𝑖=1 |𝑋𝑖𝑢 + 𝛽𝑊𝑖𝑢|

2𝑑𝑥 

 = ∫
𝔾+
∑𝑁𝑖=1 [|𝑋𝑖𝑢|

2 + 2R𝑒𝛽𝑊𝑖𝑢𝑋𝑖𝑢 + 𝛽
2𝑊𝑖

2|𝑢|2]𝑑𝑥 

 = ∫
𝔾+
∑𝑁𝑖=1 [|𝑋𝑖𝑢|

2 + 𝛽𝑊𝑖𝑋𝑖|𝑢|
2 + 𝛽2𝑊𝑖

2|𝑢|2]𝑑𝑥 

 = ∫
𝔾+
∑𝑁𝑖=1 [|𝑋𝑖𝑢|

2 − 𝛽(𝑋𝑖𝑊𝑖)|𝑢|
2 + 𝛽2𝑊𝑖

2|𝑢|2]𝑑𝑥. 

 

From the above expression we get the inequality  

 

 ∫
𝔾+
|∇𝔾𝑢|

2𝑑𝑥 ≥ ∫
𝔾+
∑𝑁𝑖=1 [(𝛽(𝑋𝑖𝑊𝑖) − 𝛽

2𝑊𝑖
2)|𝑢|2]𝑑𝑥. (2.8) 
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Let us now take 𝑊𝑖 as  

 

 𝑊𝑖(𝑥) =
〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
=
〈𝑋𝑖(𝑥),𝜈〉

〈𝑥,𝜈〉−𝑑
, (2.9) 

 

where  

𝑋𝑖(𝑥) = ((0,… ,1⏞    
𝑖

… ,0, 𝑎𝑖,1
(2)
(𝑥′), … , 𝑎𝑖,𝑁𝑟

(𝑟)
(𝑥′, 𝑥(2), … , 𝑥(𝑟−1))), 

 

and  

 𝜈 = (𝜈1, 𝜈2, … , 𝜈𝑟), 𝜈𝑗 ∈ ℝ
𝑁𝑗 . 

 

Now 𝑊𝑖(𝑥) can be written as  

 

𝑊𝑖(𝑥) =
𝜈1,𝑖 + ∑

𝑟
𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑎𝑖,𝑚

(𝑙)
(𝑥′, … , 𝑥(𝑙−1))𝜈𝑙,𝑚

∑𝑟𝑙=1 𝑥
(𝑙) ⋅ 𝜈𝑙 − 𝑑

. 

 

By a direct computation we have  

 

𝑋𝑖𝑊𝑖(𝑥) =
𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+) − 〈𝑋𝑖(𝑥), 𝜈〉𝑋𝑖(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2
 

 =
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
−

〈𝑋𝑖(𝑥),𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)2
, (2.10) 

 

where  

 

 𝑋𝑖(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+)) = 𝑋𝑖 (∑

𝑁
𝑘=1 𝑥′𝑘𝜈1,𝑘 + ∑

𝑟
𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑥𝑚

(𝑙)
𝜈𝑙,𝑚 − 𝑑) 

 = 𝜈1,𝑖 + ∑
𝑟
𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑎𝑖,𝑚

(𝑙)
(𝑥′, … , 𝑥(𝑙−1))𝜈𝑙,𝑚 

 = 〈𝑋𝑖(𝑥), 𝜈〉. 
 

Inserting the expression (2.10) in (2.8) we get  

 

∫
𝔾+
|∇𝔾𝑢|

2𝑑𝑥 ≥ −(𝛽2 + 𝛽)∫
𝔾+
∑

𝑁

𝑖=1

〈𝑋𝑖(𝑥), 𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2
|𝑢|2𝑑𝑥 

+𝛽∫
𝔾+
∑

𝑁

𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)
|𝑢|2𝑑𝑥. 

 

The proof of Theorem 2.1.1 is finished.  

As consequences of Theorem 2.1.1, we have the geometric Hardy inequalities 

on the half-space without an angle function, which seems an interesting new result on 
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𝔾.   

C o r o l l a r y  2 . 1 . 4  Let 𝔾+ be a half-space of a stratified group 𝔾. Then we 

have  

 

 ∫
𝔾+
|𝛻𝔾𝑢|

2𝑑𝑥 ≥
1

4
∫
𝔾+

|𝑢|2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)2
𝑑𝑥, (2.11) 

 

for all 𝑢 ∈ 𝐶0
∞(𝔾+). 

P r o o f  o f  C o r o l l a r y  2 . 1 . 4 .  Let 𝑥: = (𝑥′, 𝑥(2), … , 𝑥(𝑟)) ∈ 𝔾 with 𝑥′ =
(𝑥′1, … , 𝑥′𝑁)  and 𝑥(𝑗) ∈ ℝ𝑁𝑗 , 𝑗 = 2,… , 𝑟 . By taking 𝜈: = (𝜈′, 0, … ,0)  with 𝜈′ =
(𝜈′1, … , 𝜈′𝑁), we have that  

 𝑋𝑖(𝑥) = ((0,… ,1⏞    
𝑖

… ,0, 𝑎𝑖,1
(2)
(𝑥′),… , 𝑎𝑖,𝑁𝑟

(𝑟)
(𝑥′, 𝑥(2), … , 𝑥(𝑟−1))), 

 

we have  

 

∑

𝑁

𝑖=1

〈𝑋𝑖(𝑥), 𝜈〉
2 =∑

𝑁

𝑖=1

(𝜈𝑖′)
2 = |𝜈′|2 = 1, 

 

and  

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈〉 = 𝑋𝑖𝜈′𝑖 = 0. 
 

Inserting the above expressions in inequality (2.5) we arrive at  

 

∫
𝔾+
|∇𝔾𝑢|

2𝑑𝑥 ≥ −(𝛽2 + 𝛽)∫
𝔾+

|𝑢|2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2
𝑑𝑥. 

 

For optimisation we differentiate the right-hand side of integral with respect to 𝛽, 

then we have  

 

 −2𝛽 − 1 = 0, 
 

which implies  

 

𝛽 = −
1

2
. 

 

We complete the proof.  

We also have the geometric uncertainty principle on the half-space of 𝔾+. 

C o r o l l a r y  2 . 1 . 5  Let 𝔾+ be a half-space of a stratified group 𝔾. Then we 

have  

 

 (∫
𝔾+
|𝛻𝔾𝑢|

2𝑑𝑥)
1

2(∫
𝔾+
𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2|𝑢|2𝑑𝑥)

1

2 ≥
1

2
∫
𝔾+
|𝑢|2𝑑𝑥, (2.12) 
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for all 𝑢 ∈ 𝐶0
∞(𝔾+).   

P r o o f  o f  C o r o l l a r y  2 . 1 . 5 .  By using (2.11) and the Cauchy-Schwarz 

inequality we get  

 

∫
𝔾+
|∇𝔾𝑢|

2𝑑𝑥∫
𝔾+
𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2|𝑢|2𝑑𝑥 

≥
1

4
∫
𝔾+

1

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2
|𝑢|2𝑑𝑥∫

𝔾+
𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2|𝑢|2𝑑𝑥 

≥
1

4
(∫
𝔾+
|𝑢|2𝑑𝑥)

2

. 

  

To demonstrate our general result in a particular case, here we consider the 

Heisenberg group, which is a well-known example of step 𝑟 = 2 (stratified) group.   

C o r o l l a r y  2 . 1 . 6  Let ℍ+ = {(𝑥1, 𝑥2, 𝑥3) ∈ ℍ |  𝑥3 > 0} be a half-space of 

the Heisenberg group ℍ. Then for any 𝑢 ∈ 𝐶0
∞(ℍ+) we have  

 

 ∫
ℍ+
|∇ℍ𝑢|

2𝑑𝑥 ≥ ∫
ℍ+

|𝑥1|
2+|𝑥2|

2

𝑥3
2 |𝑢|2𝑑𝑥, (2.13) 

 

where 𝛻𝐻 = {𝑋1, 𝑋2}.   

P r o o f  o f  C o r o l l a r y  2 . 1 . 6 .  Recall that the left-invariant vector fields on 

the Heisenberg group are generated by the basis  

 

𝑋1 =
𝜕

𝜕𝑥1
+ 2𝑥2

𝜕

𝜕𝑥3
, 

𝑋2 =
𝜕

𝜕𝑥2
− 2𝑥1

𝜕

𝜕𝑥3
, 

 

 with the commutator  

 

 [𝑋1, 𝑋2] = −4
𝜕

𝜕𝑥3
. 

 

For 𝑥 = (𝑥1, 𝑥2, 𝑥3), choosing 𝜈 = (0,0,1) as the unit vector in the direction of 𝑥3 

and taking 𝑑 = 0 in inequality (2.5), we get  

 

𝑋1(𝑥) = (1,0,2𝑥2)  and  𝑋2(𝑥) = (0,1, −2𝑥1), 
 

and  

 

〈𝑋1(𝑥), 𝜈〉 = 2𝑥2,    and    〈𝑋2(𝑥), 𝜈〉 = −2𝑥1, 
 

𝑋1〈𝑋1(𝑥), 𝜈〉 = 0,    and    𝑋2〈𝑋2(𝑥), 𝜈〉 = 0. 
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Therefore, with 𝒲(𝑥) as in (2.4), we have 

  

𝒲(𝑥)2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2
= 4

|𝑥1|
2 + |𝑥2|

2

𝑥3
2 . 

 

Substituting these into inequality (2.5) we arrive at  

 

∫
ℍ+
|∇𝐻𝑢|

2𝑑𝑥 ≥ ∫
ℍ+

|𝑥1|
2 + |𝑥2|

2

𝑥3
2 |𝑢|2𝑑𝑥, 

 

taking 𝛽 = −
1

2
.  

Let us present an example for the step 𝑟 = 3  (stratified) groups. A 

well-known stratified group with step three is the Engel group, which can be denoted 

by 𝔼. Topologically 𝔼 is ℝ4 with the group law of 𝔼, which is given by  

 

𝑥 ∘ 𝑦 = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3 + 𝑃1, 𝑥4 + 𝑦4 + 𝑃2), 
 

where  

 𝑃1 =
1

2
(𝑥1𝑦2 − 𝑥2𝑦1), 

 𝑃2 =
1

2
(𝑥1𝑦3 − 𝑥3𝑦1) +

1

12
(𝑥1
2𝑦2 − 𝑥1𝑦1(𝑥2 + 𝑦2) + 𝑥2𝑦1

2). 

 

The left-invariant vector fields of 𝔼 are generated by the basis  

 

 𝑋1 =
𝜕

𝜕𝑥1
−
𝑥2

2

𝜕

𝜕𝑥3
− (

𝑥3

2
−
𝑥1𝑥2

12
)

𝜕

𝜕𝑥4
, 

 𝑋2 =
𝜕

𝜕𝑥2
+
𝑥1

2

𝜕

𝜕𝑥3
+
𝑥1
2

12

𝜕

𝜕𝑥4
, 

 𝑋3 =
𝜕

𝜕𝑥3
+
𝑥1

2

𝜕

𝜕𝑥4
, 

 𝑋4 =
𝜕

𝜕𝑥4
. 

 

C o r o l l a r y  2 . 1 . 7  Let 𝔼+ = {𝑥:= (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝔼 |  〈𝑥, 𝜈〉 > 0}  be a 

half-space of the Engel group 𝔼. Then for all 𝛽 ∈ ℝ and 𝑢 ∈ 𝐶0
∞(𝔼+) we have  

 

 ∫
𝔼+
|𝛻𝔼𝑢|

2𝑑𝑥 ≥ 𝐶1(𝛽) ∫𝔼+
〈𝑋1(𝑥),𝜈〉

2+〈𝑋2(𝑥),𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔼+)2
|𝑢|2𝑑𝑥 (2.14) 

 +
𝛽

3
∫
𝔼+

𝑥2𝜈4

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔼+)
|𝑢|2𝑑𝑥, 

 

where 𝛻𝔼 = {𝑋1, 𝑋2}, 𝜈:= (𝜈1, 𝜈2, 𝜈3, 𝜈4), and 𝐶1(𝛽) = −(𝛽
2 + 𝛽).   

R e m a r k  2 . 1 . 8  If we take 𝜈4 = 0 in (2.14), then we have the following 

inequality on 𝔼, by taking 𝛽 = −
1

2
,  
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∫
𝔼+
|∇𝔼𝑢|

2𝑑𝑥 ≥
1

4
∫
𝔼+

〈𝑋1(𝑥), 𝜈〉
2 + 〈𝑋2(𝑥), 𝜈〉

2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔼+)2
|𝑢|2𝑑𝑥. 

   

P r o o f  o f  C o r o l l a r y  2 . 1 . 7 .  As we mentioned, the Engel group has the 

following basis of the left-invariant vector fields  

 

 𝑋1 =
𝜕

𝜕𝑥1
−
𝑥2

2

𝜕

𝜕𝑥3
− (

𝑥3

2
−
𝑥1𝑥2

12
)

𝜕

𝜕𝑥4
, 

 𝑋2 =
𝜕

𝜕𝑥2
+
𝑥1

2

𝜕

𝜕𝑥3
+
𝑥1
2

12

𝜕

𝜕𝑥4
, 

 

with the following two (non-zero) commutators  

 

 𝑋3 = [𝑋1, 𝑋2] =
𝜕

𝜕𝑥3
+
𝑥1

2

𝜕

𝜕𝑥4
, 

 𝑋4 = [𝑋1, 𝑋3] =
𝜕

𝜕𝑥4
. 

 

Thus, we have  

 

 𝑋1(𝑥) = (1,0,−
𝑥2

2
, − (

𝑥3

2
−
𝑥1𝑥2

12
)), 

 𝑋2(𝑥) = (0,1,
𝑥1

2
,
𝑥1
2

12
). 

 

A direct calculation gives that  

 

 〈𝑋1(𝑥), 𝜈〉 = 𝜈1 −
𝑥2

2
𝜈3 − (

𝑥3

2
−
𝑥1𝑥2

12
) 𝜈4, 

 〈𝑋2(𝑥), 𝜈〉 = 𝜈2 +
𝑥1

2
𝜈3 +

𝑥1
2

12
𝜈4, 

 𝑋1〈𝑋1(𝑥), 𝜈〉 =
𝑥2

12
𝜈4 +

𝑥2

4
𝜈4 =

𝑥2𝜈4

3
, 

 𝑋2〈𝑋2(𝑥), 𝜈〉 = 0. 
 

Now substituting these into inequality (2.5) we obtain the desired result.  

 

2.2  Geometric 𝑳𝒑-Hardy type inequality on half-spaces 

Here we construct an 𝐿𝑝 version of the geometric Hardy inequality on the 

half-space of 𝔾  as a generalisation of the previous theorem. We define the 

𝑝-version of the angle function by 𝒲𝑝, which is given by the formula  

 

 𝒲𝑝(𝑥) = (∑
𝑁
𝑖=1 |〈𝑋𝑖(𝑥), 𝜈〉|

𝑝)
1

𝑝. (2.15) 

 

T h e o r e m  2 . 2 . 1  Let 𝔾+ be a half-space of a stratified group 𝔾. Then for 

all 𝛽 ∈ ℝ we have  
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 ∫
𝔾+
∑𝑁𝑖=1 |𝑋𝑖𝑢|

𝑝𝑑𝑥 ≥ 𝐶2(𝛽, 𝑝) ∫𝔾+
𝒲𝑝(𝑥)

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 

 +𝛽(𝑝 − 1) ∫
𝔾+
∑𝑁𝑖=1 (

|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−2 𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
|𝑢|𝑝𝑑𝑥 (2.16) 

 

for all 𝑢 ∈ 𝐶0
∞(𝔾+), 1 < 𝑝 < ∞ and 𝐶2(𝛽, 𝑝):= −(𝑝 − 1)(|𝛽|

𝑝

𝑝−1 + 𝛽).   

P r o o f  o f  T h e o r e m  2 . 2 . 1 .  We use the standard method such as the 

divergence theorem to obtain the inequality (2.16). For 𝑊 ∈ 𝐶∞(𝔾+) and 𝑓 ∈
𝐶1(𝔾+), a direct calculation shows that  

 

∫
𝔾+
d𝑖𝑣𝔾(𝑓𝑊)|𝑢|

𝑝𝑑𝑥 = −∫
𝔾+
𝑓𝑊 ⋅ ∇𝔾|𝑢|

𝑝𝑑𝑥 

= −𝑝∫
𝔾+
𝑓〈𝑊, ∇𝔾𝑢〉|𝑢|

𝑝−1𝑑𝑥 

 ≤ 𝑝(∫
𝔾+
|〈𝑊, ∇𝔾𝑢〉|

𝑝𝑑𝑥)
1

𝑝 (∫
𝔾+
|𝑓|

𝑝

𝑝−1|𝑢|𝑝𝑑𝑥)

𝑝−1

𝑝

. (2.17) 

 

Here in the last line Hölder's inequality was applied. For 𝑝 > 1 and 𝑞 > 1 with 
1

𝑝
+
1

𝑞
= 1 recall Young's inequality  

 

 𝑎𝑏 ≤
𝑎𝑝

𝑝
+
𝑏𝑞

𝑞
, for  𝑎 ≥ 0, 𝑏 ≥ 0. 

 

Let us set that  

 

 𝑎:= (∫
𝔾+
|〈𝑊, ∇𝔾𝑢〉|

𝑝𝑑𝑥)
1

𝑝    and    𝑏: = (∫
𝔾+
|𝑓|

𝑝

𝑝−1|𝑢|𝑝𝑑𝑥)

𝑝−1

𝑝

. 

 

By using Young's inequality in (2.17) and rearranging the terms, we arrive at  

 

 ∫
𝔾+
|〈𝑊, ∇𝔾𝑢〉|

𝑝𝑑𝑥 ≥ ∫
𝔾+
(d𝑖𝑣𝔾(𝑓𝑊) − (𝑝 − 1)|𝑓|

𝑝

𝑝−1) |𝑢|𝑝𝑑𝑥. (2.18) 

 

We choose 𝑊:= 𝐼𝑖, which has the following form 𝐼𝑖 = (0,… ,1⏞  
𝑖

… ,0) and set  

 

𝑓 = 𝛽
|〈𝑋𝑖(𝑥), 𝜈〉|

𝑝−1

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
. 

 

Now we calculate  

 

 d𝑖𝑣𝔾(𝑊𝑓) = (∇𝔾 ⋅ 𝐼𝑖)𝑓 = 𝑋𝑖𝑓 = 𝛽𝑋𝑖 (
|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−1
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 = 𝛽(𝑝 − 1) (
|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−2

𝑋𝑖 (
〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
) 

 = 𝛽(𝑝 − 1) (
|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
−

|〈𝑋𝑖(𝑥),𝜈〉|
2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)2
) 

 = 𝛽(𝑝 − 1) [(
|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
) −

|〈𝑋𝑖(𝑥),𝜈〉|
𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝
], 

 

and  

 |𝑓|
𝑝

𝑝−1 = |𝛽|
𝑝

𝑝−1
|〈𝑋𝑖(𝑥),𝜈〉|

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝
. 

 

We also have  

 〈𝑊, ∇𝔾𝑢〉 = (0,… ,1⏞  
𝑖

… ,0) ⋅ (𝑋1𝑢,… , 𝑋𝑖𝑢,… , 𝑋𝑁𝑢)
𝑇 = 𝑋𝑖𝑢. 

 

Inserting the above calculations in (2.18) and summing over 𝑖 = 1,… ,𝑁, we arrive 

at  

 

∫
𝔾+
∑

𝑁

𝑖=1

|𝑋𝑖𝑢|
𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|

𝑝
𝑝−1 + 𝛽)∫

𝔾+
∑

𝑁

𝑖=1

|〈𝑋𝑖(𝑥), 𝜈〉|
𝑝

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 

 +𝛽(𝑝 − 1) ∫
𝔾+
∑𝑁𝑖=1 (

|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−2 𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
|𝑢|𝑝𝑑𝑥. (2.19) 

 

We complete the proof of Theorem 2.2.1. 

R e m a r k  2 . 2 . 2  For 𝑝 ≥ 2, since  

 

 |∇𝔾𝑢|
𝑝 = (∑𝑁𝑖=1 |𝑋𝑖𝑢|

2)
𝑝

2 ≥ ∑𝑁𝑖=1 (|𝑋𝑖𝑢|
2)

𝑝

2, (2.20) 

 

we have the following inequality  

 

 ∫
𝔾+
|∇𝔾𝑢|

𝑝𝑑𝑥 ≥ 𝐶2(𝛽, 𝑝) ∫𝔾+
𝒲𝑝(𝑥)

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 (2.21) 

 +𝛽(𝑝 − 1) ∫
𝔾+
∑𝑁𝑖=1 (

|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
)
𝑝−2 𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)
|𝑢|𝑝𝑑𝑥. 

 

2.3  Geometric 𝑳𝟐-Hardy inequality on convex domains 

In this section, we present the geometric Hardy inequalities on the convex 

domains in stratified groups. The convex domain is understood in the sense of the 

Euclidean space. Let Ω be a convex domain of a stratified group 𝔾 and let 𝜕Ω be 

its boundary. Below for 𝑥 ∈ Ω we denote by 𝜈(𝑥) the unit normal for 𝜕Ω at a 

point 𝑥 ∈ 𝜕Ω such that 𝑑𝑖𝑠𝑡(𝑥, Ω) = 𝑑𝑖𝑠𝑡(𝑥, 𝑥). For the half-plane, we have the 

distance from the boundary 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω) = 〈𝑥, 𝜈〉 − 𝑑. As it is introduced in the 

previous section we also have the generalised angle function 
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𝒲𝑝(𝑥) = (∑

𝑁

𝑖=1

|〈𝑋𝑖(𝑥), 𝜈〉|
𝑝)

1
𝑝

, 

 

with 𝒲(𝑥):= 𝒲2(𝑥). 
 

T h e o r e m  2 . 3 . 1  Let 𝛺 be a convex domain of a stratified group 𝔾. Then 

for 𝛽 < 0 we have  

 

∫
𝛺
|𝛻𝔾𝑢|

2𝑑𝑥 ≥ 𝐶1(𝛽) ∫𝛺
𝒲(𝑥)2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝛺)2
|𝑢|2𝑑𝑥 +

𝛽 ∫
𝛺
∑𝑁𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝛺)
|𝑢|2𝑑𝑥, (2.22) 

 

for all 𝑢 ∈ 𝐶0
∞(𝛺), and 𝐶1(𝛽):= −(𝛽

2 + 𝛽). 
P r o o f  o f  T h e o r e m  2 . 3 . 1 .  We follow the approach of Larson by proving 

inequality (2.22) in the case when Ω is a convex polytope. We denote its facets by 

{ℱ𝑗}𝑗 and unit normals of these facets by {𝜈𝑗}𝑗, which are directed inward. Then Ω 

can be constructed by the union of the disjoint sets Ω𝑗: = {𝑥 ∈ Ω: 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω) =

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)}. Now we apply the same method as in the case of the half-space 𝔾+ for 

each element Ω𝑗 with one exception that not all the boundary values are zero when 

we use the partial integration. As in the previous computation we have  

 

 0 ≤ ∫
Ω𝑗
|∇𝔾𝑢 + 𝛽𝑊𝑢|

2𝑑𝑥 = ∫
Ω𝑗
∑𝑁𝑖=1 |𝑋𝑖𝑢 + 𝛽𝑊𝑖𝑢|

2𝑑𝑥 

 = ∫
Ω𝑗
∑𝑁𝑖=1 [|𝑋𝑖𝑢|

2 + 2R𝑒𝛽𝑊𝑖𝑢𝑋𝑖𝑢 + 𝛽
2𝑊𝑖

2|𝑢|2]𝑑𝑥 

 = ∫
Ω𝑗
∑𝑁𝑖=1 [|𝑋𝑖𝑢|

2 + 𝛽𝑊𝑖𝑋𝑖|𝑢|
2 + 𝛽2𝑊𝑖

2|𝑢|2]𝑑𝑥 

 = ∫
Ω𝑗
∑𝑁𝑖=1 [|𝑋𝑖𝑢|

2 − 𝛽(𝑋𝑖𝑊𝑖)|𝑢|
2 + 𝛽2𝑊𝑖

2|𝑢|2]𝑑𝑥 

 +𝛽 ∫
𝜕Ω𝑗

∑𝑁𝑖=1 𝑊𝑖〈𝑋𝑖(𝑥), 𝑛𝑗(𝑥)〉|𝑢|
2𝑑Γ𝜕Ω𝑗(𝑥), 

 

where 𝑛𝑗 is the unit normal of 𝜕Ω𝑗 which is directed outward. Since ℱ𝑗 ⊂ 𝜕Ω𝑗 we 

have 𝑛𝑗 = −𝜈𝑗. 

The boundary terms on 𝜕Ω vanish since 𝑢 is compactly supported in Ω. So 

we only deal with the parts of 𝜕Ω𝑗 in Ω. Note that for every facet of 𝜕Ω𝑗  there 

exists some 𝜕Ω𝑙  which shares this facet. We denote by Γ𝑗𝑙 the common facet of 

𝜕Ω𝑗  and 𝜕Ω𝑙 , with 𝑛𝑘|Γ𝑗𝑙 = −𝑛𝑙|Γ𝑗𝑙 . From the above expression we get the 

following inequality  

 

 ∫
Ω𝑗
|∇𝔾𝑢|

2𝑑𝑥 ≥ ∫
Ω𝑗
∑𝑁𝑖=1 [(𝛽(𝑋𝑖𝑊𝑖) − 𝛽

2𝑊𝑖
2)|𝑢|2]𝑑𝑥 (2.23) 

 −𝛽 ∫
𝜕Ω𝑗

∑𝑁𝑖=1 𝑊𝑖〈𝑋𝑖(𝑥), 𝑛𝑗(𝑥)〉|𝑢|
2𝑑Γ𝜕Ω𝑗(𝑥). 
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Now we choose 𝑊𝑖 in the form  

 

𝑊𝑖(𝑥) =
〈𝑋𝑖(𝑥), 𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω𝑗)
=
〈𝑋𝑖(𝑥), 𝜈𝑗〉

〈𝑥, 𝜈𝑗〉 − 𝑑
, 

 

and a direct computation shows that  

 

 𝑋𝑖𝑊𝑖(𝑥) =
𝑋𝑖〈𝑋𝑖(𝑥),𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω𝑗)
−

〈𝑋𝑖(𝑥),𝜈𝑗〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω𝑗)
2
. (2.24) 

 

Inserting the expression (2.24) into inequality (2.23) we get  

 

 ∫
Ω𝑗
|∇𝔾𝑢|

2𝑑𝑥 ≥ −(𝛽2 + 𝛽)∫
Ω𝑗
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈𝑗〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω𝑗)
2
|𝑢|2𝑑𝑥 (2.25) 

 

 +𝛽 ∫
Ω𝑗
∑𝑁𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥),𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω𝑗)
|𝑢|2𝑑𝑥 − 𝛽 ∫

Γ𝑗𝑙
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈𝑗〉〈𝑋𝑖(𝑥),𝑛𝑗𝑙〉

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
|𝑢|2𝑑Γ𝑗𝑙 . 

 

Now we sum over all partition elements Ω𝑗 and let 𝑛𝑗𝑙 = 𝑛𝑘|Γ𝑗𝑙, i.e. the unit normal 

of Γ𝑗𝑙 pointing from Ω𝑗 into Ω𝑙. Then we get  

 

 ∫
Ω
|∇𝔾𝑢|

2𝑑𝑥 ≥ −(𝛽2 + 𝛽)∫
Ω
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)2
|𝑢|2𝑑𝑥 

 +𝛽 ∫
Ω
∑𝑁𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
|𝑢|2𝑑𝑥 

 −𝛽∑𝑗≠𝑙 ∫Γ𝑗𝑙
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈𝑗〉〈𝑋𝑖(𝑥),𝑛𝑗𝑙〉

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
|𝑢|2𝑑Γ𝑗𝑙 

 = −(𝛽2 + 𝛽)∫
Ω
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)2
|𝑢|2𝑑𝑥 

 +𝛽 ∫
Ω
∑𝑁𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
|𝑢|2𝑑𝑥 

 −𝛽∑𝑗<𝑙 ∫Γ𝑗𝑙
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈𝑗−𝜈𝑙〉〈𝑋𝑖(𝑥),𝑛𝑗𝑙〉

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
|𝑢|2𝑑Γ𝑗𝑙 . 

 

Here we used the fact that (by the definition) Γ𝑗𝑙  is a set with 𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗) =

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑙). From  

 

 Γ𝑗𝑙 = {𝑥: 𝑥 ⋅ 𝜈𝑗 − 𝑑𝑗 = 𝑥 ⋅ 𝜈𝑙 − 𝑑𝑙} 

 

rearranging 𝑥 ⋅ (𝜈𝑗 − 𝜈𝑙) − 𝑑𝑗 + 𝑑𝑙 = 0  we see that Γ𝑗𝑙  is a hyperplane with a 

normal 𝜈𝑗 − 𝜈𝑙. Thus, 𝜈𝑗 − 𝜈𝑙 is parallel to 𝑛𝑗𝑙 and one only needs to check that 

(𝜈𝑗 − 𝜈𝑙) ⋅ 𝑛𝑗𝑙 > 0. Observe that 𝑛𝑗𝑙  points out and 𝜈𝑗  points into 𝑗-th partition 

element, so 𝜈𝑗 ⋅ 𝑛𝑗𝑙 is non-negative. Similarly, we see that 𝜈𝑙 ⋅ 𝑛𝑗𝑙 is non-positive. 

This means we have (𝜈𝑗 − 𝜈𝑙) ⋅ 𝑛𝑗𝑙 > 0. In addition, it is easy to see that  
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 |𝜈𝑗 − 𝜈𝑙|
2 = (𝜈𝑗 − 𝜈𝑙) ⋅ (𝜈𝑗 − 𝜈𝑙) = 2 − 2𝜈𝑗 ⋅ 𝜈𝑙 

 = 2 − 2cos(𝛼𝑗𝑙), 

 

which implies that  

 

 (𝜈𝑗 − 𝜈𝑙) ⋅ 𝑛𝑗𝑙 = √2 − 2cos(𝛼𝑗𝑙), 

 

where 𝛼𝑗𝑙 is the angle between 𝜈𝑗 and 𝜈𝑙. So we obtain  

 

 ∫
Ω
|∇𝔾𝑢|

2𝑑𝑥 ≥ −(𝛽2 + 𝛽)∫
Ω
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)2
|𝑢|2𝑑𝑥 

 +𝛽 ∫
Ω
∑𝑁𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
|𝑢|2𝑑𝑥 

 −𝛽∑𝑗<𝑙 ∑
𝑁
𝑖=1 ∫Γ𝑗𝑙 √

1 − cos(𝛼𝑗𝑙)
〈𝑋𝑖(𝑥),𝑛𝑗𝑙〉

2

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
|𝑢|2𝑑Γ𝑗𝑙 . 

 

Here with 𝛽 < 0 and due to the boundary term signs we verify the inequality for the 

polytope convex domains. 

Let us now consider the general case, that is, when Ω is an arbitrary convex 

domain. For each 𝑢 ∈ 𝐶0
∞(Ω) one can always choose an increasing sequence of 

convex polytopes {Ω𝑗}𝑗=1
∞  such that 𝑢 ∈ 𝐶0

∞(Ω1), Ω𝑗 ⊂ Ω and Ω𝑗 → Ω as 𝑗 → ∞. 

Assume that 𝜈𝑗(𝑥) is the above map 𝜈 (corresponding to Ω𝑗) we compute  

 

∫
Ω

|∇𝔾𝑢|
2𝑑𝑥 = ∫

Ω𝑗

|∇𝔾𝑢|
2𝑑𝑥 

≥ −(𝛽2 + 𝛽)∫
Ω𝑗

∑

𝑁

𝑖=1

〈𝑋𝑖(𝑥), 𝜈𝑗〉
2

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω𝑗)
2
|𝑢|2𝑑𝑥 + 𝛽∫

Ω𝑗

∑

𝑁

𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω𝑗)
|𝑢|2𝑑𝑥 

= −(𝛽2 + 𝛽)∫
Ω

∑

𝑁

𝑖=1

〈𝑋𝑖(𝑥), 𝜈𝑗〉
2

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω𝑗)
2
|𝑢|2𝑑𝑥 + 𝛽∫

Ω

∑

𝑁

𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥), 𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω𝑗)
|𝑢|2𝑑𝑥 

≥ −(𝛽2 + 𝛽)∫
Ω
∑𝑁𝑖=1

〈𝑋𝑖(𝑥),𝜈𝑗〉
2

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)2
|𝑢|2𝑑𝑥 + 𝛽 ∫

Ω
∑𝑁𝑖=1

𝑋𝑖〈𝑋𝑖(𝑥),𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
|𝑢|2𝑑𝑥. 

 

Now we obtain the desired result when 𝑗 → ∞.  

 

2.4  Geometric 𝑳𝒑-Hardy's inequality on convex domains. In this section 

we give the 𝑳𝒑-version of the previous results.  

T h e o r e m  2 . 4 . 1  Let 𝛺 be a convex domain of a stratified group 𝔾. Then 

for 𝛽 < 0 we have  

 

 ∫
𝛺
∑𝑁𝑖=1 |𝑋𝑖𝑢|

𝑝𝑑𝑥 ≥ 𝐶2(𝛽, 𝑝) ∫𝛺
𝒲𝑝(𝑥)

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝛺)𝑝
|𝑢|𝑝𝑑𝑥 (2.26) 

 +𝛽(𝑝 − 1) ∫
𝛺
∑𝑁𝑖=1 (

|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕𝛺)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕𝛺)
) |𝑢|𝑝𝑑𝑥, 
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for all 𝑢 ∈ 𝐶0
∞(𝛺), and 𝐶2(𝛽, 𝑝):= −(𝑝 − 1)(|𝛽|

𝑝

𝑝−1 + 𝛽).  

P r o o f  o f  T h e o r e m  2 . 4 . 1 .  Let us assume that Ω is the convex polytope 

as in the 𝑝 = 2 case. Thus, we consider the partition Ω𝑗 as the previous case. For 

𝑓 ∈ 𝐶1(Ω𝑗) and 𝑊 ∈ 𝐶∞(Ω𝑗), a simple calculation shows that  

 

∫
Ω𝑗

d𝑖𝑣𝔾(𝑓𝑊)|𝑢|
𝑝𝑑𝑥

= −𝑝∫
Ω𝑗

𝑓〈𝑊, ∇𝔾𝑢〉|𝑢|
𝑝−1𝑑𝑥 + ∫

𝜕Ω𝑗

𝑓〈𝑊, 𝑛𝑗(𝑥)〉|𝑢|
𝑝𝑑Γ𝜕Ω𝑗(𝑥) 

≤ 𝑝(∫
Ω
|〈𝑊, ∇𝔾𝑢〉|

𝑝𝑑𝑥)
1

𝑝 (∫
Ω𝑗
|𝑓|

𝑝

𝑝−1|𝑢|𝑝𝑑𝑥)

𝑝−1

𝑝

 (2.27) 

+∫
𝜕Ω𝑗

𝑓〈𝑊, 𝑛𝑗(𝑥)〉|𝑢|
𝑝𝑑Γ𝜕Ω𝑗(𝑥). 

 

In the last line Hölder's inequality was applied. Recall again Young's inequality for 

𝑝 > 1, 𝑞 > 1 and 
1

𝑝
+
1

𝑞
= 1, we have 𝑎𝑏 ≤

𝑎𝑝

𝑝
+
𝑏𝑞

𝑞
,   for  𝑎 ≥ 0, 𝑏 ≥ 0. We now 

take 𝑞:=
𝑝

𝑝−1
 and  

 

 𝑎:= (∫
Ω
|〈𝑊, ∇𝔾𝑢〉|

𝑝𝑑𝑥)
1

𝑝    and    𝑏: = (∫
Ω
|𝑓|

𝑝

𝑝−1|𝑢|𝑝𝑑𝑥)

𝑝−1

𝑝

. 

 

By using Young's inequality in (2.27) and rearranging the terms, we arrive at  

 

 ∫
Ω𝑗
|〈𝑊, ∇𝔾𝑢〉|

𝑝𝑑𝑥 ≥ ∫
Ω
(d𝑖𝑣𝔾(𝑓𝑊) − (𝑝 − 1)|𝑓|

𝑝

𝑝−1) |𝑢|𝑝𝑑𝑥 (2.28) 

 

 −∫
𝜕Ω𝑗

𝑓〈𝑊, 𝑛𝑗(𝑥)〉|𝑢|
𝑝𝑑Γ𝜕Ω𝑗(𝑥). 

 

We choose 𝑊:= 𝐼𝑖 as a unit vector of the 𝑖𝑡ℎ component and let  

 

𝑓 = 𝛽
|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑝−1

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)
𝑝−1

. 

 

As before a direct calculation shows that 

  

 d𝑖𝑣𝔾(𝑊𝑓) = 𝑋𝑖𝑓 = 𝛽𝑋𝑖 (
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
)
𝑝−1

 

 = 𝛽(𝑝 − 1) (
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
)
𝑝−2

𝑋𝑖 (
〈𝑋𝑖(𝑥),𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
) 
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 = 𝛽(𝑝 − 1) (
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
−

|〈𝑋𝑖(𝑥),𝜈𝑗〉|
2

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
2) 

 = 𝛽(𝑝 − 1) [(
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
) −

|〈𝑋𝑖(𝑥),𝜈𝑗〉|
𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
𝑝], 

 

and  

 |𝑓|
𝑝

𝑝−1 = |𝛽|
𝑝

𝑝−1
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑝

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
𝑝
. 

 

We also have  

 〈𝑊, ∇𝔾𝑢〉 = (0,… ,1⏞  
𝑖

… ,0) ⋅ (𝑋1𝑢,… , 𝑋𝑖𝑢,… , 𝑋𝑁𝑢)
𝑇 = 𝑋𝑖𝑢. 

 

Inserting the above calculations into (2.28) and summing over 𝑖 = 1,𝑁, we arrive at  

 

∫
Ω𝑗
∑𝑁𝑖=1 |𝑋𝑖𝑢|

𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|
𝑝

𝑝−1 + 𝛽)∫
Ω𝑗
∑𝑁𝑖=1

|〈𝑋𝑖(𝑥),𝜈𝑗〉|
𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕ℱ𝑗)
𝑝
|𝑢|𝑝𝑑𝑥(2.29) 

+𝛽(𝑝 − 1)∫
Ω𝑗

∑

𝑁

𝑖=1

(
|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥, 𝜕ℱ𝑗)
)

𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥), 𝜈𝑗〉

𝑑𝑖𝑠𝑡(𝑥, 𝜕ℱ𝑗)
) |𝑢|𝑝𝑑𝑥 

−𝛽∫
𝜕Ω𝑗

∑

𝑁

𝑖=1

(
|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)
)

𝑝−1

〈𝑋𝑖(𝑥), 𝑛𝑗(𝑥)〉|𝑢|
𝑝𝑑Γ𝜕Ω𝑗(𝑥). 

 

Now summing up over Ω𝑗, and with the interior boundary terms we have  

 

 ∫
Ω
∑𝑁𝑖=1 |𝑋𝑖𝑢|

𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|
𝑝

𝑝−1 + 𝛽)∑𝑁𝑖=1 ∫Ω
|〈𝑋𝑖(𝑥),𝜈〉|

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)𝑝
|𝑢|𝑝𝑑𝑥 

 +𝛽(𝑝 − 1)∑𝑁𝑖=1 ∫Ω (
|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
) |𝑢|𝑝𝑑𝑥 

 −𝛽∑𝑗≠𝑙 ∑
𝑁
𝑖=1 ∫Γ𝑗𝑙

(
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
)
𝑝−1

〈𝑋𝑖(𝑥), 𝑛𝑗𝑙(𝑥)〉|𝑢|
𝑝𝑑Γ𝑗𝑙 

 = −(𝑝 − 1)(|𝛽|
𝑝

𝑝−1 + 𝛽)∑𝑁𝑖=1 ∫Ω
|〈𝑋𝑖(𝑥),𝜈〉|

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)𝑝
|𝑢|𝑝𝑑𝑥 

 +𝛽(𝑝 − 1)∑𝑁𝑖=1 ∫Ω (
|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
) |𝑢|𝑝𝑑𝑥 

 −𝛽∑𝑗<𝑙 ∑
𝑁
𝑖=1 ∫Γ𝑗𝑙

[(
|〈𝑋𝑖(𝑥),𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑗)
)
𝑝−1

〈𝑋𝑖(𝑥), 𝑛𝑗𝑙(𝑥)〉 

 −(
|〈𝑋𝑖(𝑥),𝜈𝑙〉|

𝑑𝑖𝑠𝑡(𝑥,ℱ𝑙)
)
𝑝−1

〈𝑋𝑖(𝑥), 𝑛𝑗𝑙(𝑥)〉] |𝑢|
𝑝𝑑Γ𝑗𝑙. 

 

As in the earlier case if the boundary term is positive we can discard it, so we want to 

show that  
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[(
|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)
)

𝑝−1

〈𝑋𝑖(𝑥), 𝑛𝑗𝑙(𝑥)〉 − (
|〈𝑋𝑖(𝑥), 𝜈𝑙〉|

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑙)
)
𝑝−1

〈𝑋𝑖(𝑥), 𝑛𝑗𝑙(𝑥)〉] ≥ 0. 

 

Noting the fact that 𝑛𝑗𝑙 =
𝜈𝑗−𝜈𝑙

√2−2cos(𝛼𝑗𝑙)
 and 𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗) = 𝑑𝑖𝑠𝑡(𝑥, ℱ𝑙) on Γ𝑗𝑙 , we 

arrive at  

 

1

2 − 2cos(𝛼𝑗𝑙)
[(
|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)
)

𝑝−1

〈𝑋𝑖(𝑥), 𝜈𝑗 − 𝜈𝑙〉 − (
|〈𝑋𝑖(𝑥), 𝜈𝑙〉|

𝑑𝑖𝑠𝑡(𝑥, ℱ𝑙)
)
𝑝−1

〈𝑋𝑖(𝑥), 𝜈𝑗

− 𝜈𝑙〉] 

=
|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑝 − |〈𝑋𝑖(𝑥), 𝜈𝑗〉|
𝑝−1〈𝑋𝑖(𝑥), 𝜈𝑙〉 − |〈𝑋𝑖(𝑥), 𝜈𝑙〉|

𝑝−1〈𝑋𝑖(𝑥), 𝜈𝑗〉 + |〈𝑋𝑖(𝑥), 𝜈𝑙〉|
𝑝

(2 − 2cos(𝛼𝑗𝑙))𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)
𝑝−1

 

=
(|〈𝑋𝑖(𝑥), 𝜈𝑗〉| − |〈𝑋𝑖(𝑥), 𝜈𝑙〉|)(|〈𝑋𝑖(𝑥), 𝜈𝑗〉|

𝑝−1 − |〈𝑋𝑖(𝑥), 𝜈𝑙〉|
𝑝−1)

(2 − 2cos(𝛼𝑗𝑙))𝑑𝑖𝑠𝑡(𝑥, ℱ𝑗)
𝑝−1

≥ 0. 

 

Here we have used the equality (𝑎 − 𝑏)(𝑎𝑝−1 − 𝑏𝑝−1) = 𝑎𝑝 − 𝑎𝑝−1𝑏 − 𝑏𝑝−1𝑎 +
𝑏𝑝−1 with 𝑎 = |〈𝑋𝑖(𝑥), 𝜈𝑗〉| and 𝑏 = |〈𝑋𝑖(𝑥), 𝜈𝑙〉|. From the above expression we 

note that the boundary term in Ω is positive and 𝛽 < 0. By discarding the boundary 

term we complete the proof.  

R e m a r k  2 . 4 . 2  For 𝑝 ≥ 2, since 

  

 |∇𝔾𝑢|
𝑝 = (∑𝑁𝑖=1 |𝑋𝑖𝑢|

2)
𝑝

2 ≥ ∑𝑁𝑖=1 (|𝑋𝑖𝑢|
2)

𝑝

2, (2.30) 

 

we have the following inequality  

 

 ∫
Ω
|∇𝔾𝑢|

𝑝𝑑𝑥 ≥ 𝐶2(𝛽, 𝑝) ∫Ω
𝒲𝑝(𝑥)

𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)𝑝
|𝑢|𝑝𝑑𝑥 (2.31) 

 +𝛽(𝑝 − 1) ∫
Ω
∑𝑁𝑖=1 (

|〈𝑋𝑖(𝑥),𝜈〉|

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
)
𝑝−2

(
𝑋𝑖〈𝑋𝑖(𝑥),𝜈〉

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)
) |𝑢|𝑝𝑑𝑥. 

 

2.5  Geometric 𝑳𝒑-Hardy inequality with a natural weight 

T h e o r e m  2 . 5 . 1  Let 𝔾+ be a half-space of a stratified group 𝔾. Then for 

all 𝛽 ∈ ℝ and 𝑝 > 1 we have  

 

∫
𝔾+
|𝛻𝔾𝑢|

𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|
𝑝

𝑝−1 + 𝛽)∫
𝔾+

𝒲(𝑥)𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 (2.32) 

+𝛽∫
𝔾+

 ℒ𝑝(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
|𝑢|𝑝𝑑𝑥, 

 

for all 𝑢 ∈ 𝐶0
∞(𝔾+). 
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P r o o f  o f  T h e o r e m  2 . 5 . 1 .  Let us begin with the divergence theorem, 

then we apply the Hölder inequality and the Young inequality, respectively. It 

follows for a vector field 𝑉 ∈ 𝐶∞(𝔾+) that 

  

 ∫
𝔾+
d𝑖𝑣𝔾𝑉|𝑢|

𝑝𝑑𝑥 = −𝑝∫
𝔾+
|𝑢|𝑝−1〈𝑉, ∇𝔾𝑢〉𝑑𝑥 

 ≤ 𝑝(∫
𝔾+
|∇𝔾𝑢|

𝑝𝑑𝑥)
1

𝑝 (∫
𝔾+
|𝑉|

𝑝

𝑝−1|𝑢|𝑝𝑑𝑥)

𝑝−1

𝑝

 

 ≤ ∫
𝔾+
|∇𝔾𝑢|

𝑝𝑑𝑥 + (𝑝 − 1)∫
𝔾+
|𝑉|

𝑝

𝑝−1|𝑢|𝑝𝑑𝑥. 

 

By rearranging the above expression, we arrive at  

 

 ∫
𝔾+
|∇𝔾𝑢|

𝑝𝑑𝑥 ≥ ∫
𝔾+
(d𝑖𝑣𝔾𝑉 − (𝑝 − 1)|𝑉|

𝑝

𝑝−1)|𝑢|𝑝𝑑𝑥. (2.33) 

 

Now we choose 𝑉 in the following form  

 

 𝑉 = 𝛽
|∇𝔾𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾

+)|𝑝−2

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝−1
∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+), (2.34) 

 

that is  

 

 |𝑉|
𝑝

𝑝−1 = |𝛽|
𝑝

𝑝−1
|∇𝔾𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾

+)|𝑝

𝑑𝑖𝑠𝑡(𝑥,𝜕𝔾+)𝑝
. 

 

Also, we have  

 

 |∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+)|𝑝 = |(𝑋1𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+), … , 𝑋𝑁𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+))|𝑝 

 = |(〈𝑋1(𝑥), 𝜈〉, … , 〈𝑋𝑁(𝑥), 𝜈〉)|
𝑝 

 = (∑𝑁𝑖=1 〈𝑋𝑖(𝑥), 𝜈〉
2)

𝑝

2 = 𝒲(𝑥)𝑝. 
 

Indeed, let us show that 〈𝑋𝑖(𝑥), 𝜈〉 = 𝑋𝑖〈𝑥, 𝜈〉:  

 

 𝑋𝑖(𝑥) = ((0,… ,1⏞  
𝑖

… ,0, 𝑎𝑖,1
(2)
(𝑥′),… , 𝑎𝑖,𝑁2

(2)
(𝑥′)⏟            

𝑁2

, …, 

 𝑎𝑖,1
(𝑟)
(𝑥′, 𝑥(2), … , 𝑥(𝑟−1)), …𝑎𝑖,𝑁𝑟

(𝑟)
(𝑥′, 𝑥(2), … , 𝑥(𝑟−1))⏟                                

𝑁𝑟

), 

 〈𝑋𝑖(𝑥), 𝜈〉 = 𝜈′𝑖 + ∑
𝑟
𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑎𝑖,𝑚

(𝑙)
(𝑥′, 𝑥(2), … , 𝑥(𝑟−1))𝜈𝑚

(𝑙)
, 

 

and  

 

 〈𝑥, 𝜈〉 = ∑𝑁𝑘=1 𝑥𝑘′𝜈′𝑘 + ∑
𝑟
𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑥𝑚

(𝑙)
𝜈𝑚
(𝑙)
, 
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 𝑋𝑖〈𝑥, 𝜈〉 = 𝜈′𝑖 + ∑
𝑟
𝑙=2 ∑

𝑁𝑙
𝑚=1 𝑎𝑖,𝑚

(𝑙)
(𝑥′, 𝑥(2), … , 𝑥(𝑟−1))𝜈𝑚

(𝑙)
. 

 

A direct calculation shows that  

 

d𝑖𝑣𝔾𝑉 = 𝛽
∇𝔾(|∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+)|𝑝−2∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
 

−𝛽(𝑝 − 1)
|∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+)|𝑝−2∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+)𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−2∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+)

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)2(𝑝−1)
 

= 𝛽
 ℒ𝑝(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
− 𝛽(𝑝 − 1)

|∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+)|𝑝

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝
. 

 

So we get  

 

d𝑖𝑣𝔾𝑉 − (𝑝 − 1)|𝑉|
𝑝
𝑝−1 = −(𝑝 − 1)(|𝛽|

𝑝
𝑝−1 + 𝛽)

|∇𝔾𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+)|𝑝

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝
 

+𝛽
 ℒ𝑝(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾

+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
. 

 

Putting the above expression into inequality (2.33), we arrive at  

 

∫
𝔾+
|∇𝔾𝑢|

𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛽|
𝑝
𝑝−1 + 𝛽)∫

𝔾+

(∑𝑁𝑖=1 〈𝑋𝑖(𝑥), 𝜈〉
2)
𝑝
2

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝
|𝑢|𝑝𝑑𝑥 

+𝛽∫
𝔾+

ℒ𝑝(𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾
+))

𝑑𝑖𝑠𝑡(𝑥, 𝜕𝔾+)𝑝−1
|𝑢|𝑝𝑑𝑥, 

 

completing the proof.  

As a consequence of Theorem 2.5.1 we have the following inequality.   

C o r o l l a r y  2 . 5 . 2  Let ℍ+ be a half-space of the Heisenberg group ℍ𝑛. 

Then for all 𝑢 ∈ 𝐶0
∞(ℍ+) and 𝑝 > 1 we have  

 

 ∫
ℍ+
|𝛻𝐻𝑢|

𝑝𝑑𝜉 ≥ (
𝑝−1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉, (2.35) 

 

where the constant is sharp. 

R e m a r k  2 . 5 . 3  Note that inequality (2.35) was conjectured in [20, P. 

337-338] which is a natural extension of inequality (2.2) in [40, P. 646-647]. Also, 

the sharpness of inequality (2.35) was proved by choosing 𝜈:= (1,0,… ,0) and 𝑑 =
0.  

P r o o f  o f  C o r o l l a r y  2 . 5 . 2 .  Let us rewrite the inequality in Theorem 

2.5.1 in terms of the Heisenberg group as follows  

 



 35 

 ∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 ≥ −(𝑝 − 1)(|𝛽|
𝑝

𝑝−1 + 𝛽)∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉 

 +𝛽 ∫
ℍ+

ℒ𝑝(𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+))

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝−1
|𝑢|𝑝𝑑𝜉. 

 

In the case of the Heisenberg group, we need to show that the last term vanishes to 

prove Corollary 2.5.1. Indeed, we have  

 

 ℒ 𝑝(𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)) = 0, 

since  

 

 〈𝑋𝑖(𝜉), 𝜈〉 = 𝜈𝑥,𝑖 + 2𝑦𝑖𝜈𝑡 , 〈𝑌𝑖(𝜉), 𝜈〉 = 𝜈𝑦,𝑖 − 2𝑥𝑖𝜈𝑡, 

 

 𝑋𝑖〈𝑋𝑖(𝜉), 𝜈〉 = 0, 𝑌𝑖〈𝑌𝑖(𝜉), 𝜈〉 = 0, 
 

 𝑌𝑖〈𝑋𝑖(𝜉), 𝜈〉 = 2𝜈𝑡 , 𝑋𝑖〈𝑌𝑖(𝜉), 𝜈〉 = −2𝜈𝑡 , 
 

where 𝜉:= (𝑥, 𝑦, 𝑡)  with 𝑥, 𝑦 ∈ ℝ𝑛  and 𝑡 ∈ ℝ , 𝜈:= (𝜈𝑥, 𝜈𝑦 , 𝜈𝑡)  with 𝜈𝑥: =

(𝜈𝑥,1, … 𝜈𝑥,𝑛) and 𝜈𝑦: = (𝜈𝑦,1, … 𝜈𝑦,𝑛). Then we have  

 

 𝑋𝑖(𝜉) = (0,… ,1⏞  
𝑖

, … ,0⏟      
𝑛

, 0, … ,0⏟  
𝑛

, 2𝑦𝑖), 

 𝑌𝑖(𝜉) = (0,… ,0⏟  
𝑛

, 0, … ,1⏞  
𝑖

, … ,0⏟      
𝑛

, −2𝑥𝑖). 

 

So we have  

 

∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 ≥ −(𝑝 − 1)(|𝛽|
𝑝
𝑝−1 + 𝛽)∫

ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉. 

 

Now we optimise by differentiating the above inequality with respect to 𝛽, so that 

we have  
𝑝

𝑝 − 1
|𝛽|

1
𝑝−1 + 1 = 0, 

 

which leads to  

𝛽 = −(
𝑝 − 1

𝑝
)
𝑝−1

. 

 

Using this value of 𝛽, we arrive at  
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∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 ≥ (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉. 

 

We have finished the proof of Corollary 2.5.1.  

  

2.6  Geometric Hardy-Sobolev inequalities 

In this section, we present the geometric Hardy-Sobolev inequality in the half 

space on the Heisenberg group. 

L e m m a  2 . 6 . 1  Let ℍ+ be a half-space of the Heisenberg group ℍ𝑛. Then 

for 𝑝 ≥ 2, there exists a constant 𝐶𝑝 > 0 such that  

 

 𝐸𝑝[𝑢] = ∫ℍ+ |𝛻𝐻𝑢|
𝑝𝑑𝜉 − (

𝑝−1

𝑝
)
𝑝

∫
ℍ+

|𝛻𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|𝑝

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉 

 ≥ 𝐶𝑝 ∫ℍ+ |𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)|𝑝−1|𝛻𝐻𝑣|

𝑝𝑑𝜉, (2.36) 

 

for all 𝑢 ∈ 𝐶0
∞(ℍ+), where 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+):= 〈𝜉, 𝜈〉 − 𝑑 is the distance from 𝜉 to 

the boundary, 𝐶𝑝 = (2
𝑝−1 − 1)−1, and 𝑢(𝜉) = 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

𝑝−1

𝑝 𝑣(𝜉).   

 

The Euclidean version of such a lower estimate to the Hardy inequality was 

established by Barbaris, Filippas and Tertikas [43].  

P r o o f  o f  L e m m a  2 . 6 . 1 .  Let us begin by recalling once again the angle 

function, denoted by 𝒲,  

 

 |∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)|𝑝 = |(𝑋1〈𝜉, 𝜈〉, … , 𝑋𝑛〈𝜉, 𝜈〉, 𝑌1〈𝜉, 𝜈〉, … , 𝑌𝑛〈𝜉, 𝜈〉)|

𝑝 

 = (∑𝑛𝑖=1 〈𝑋𝑖(𝜉), 𝜈〉
2 + 〈𝑌𝑖(𝜉), 𝜈〉

2)
𝑝

2 

 = 𝒲(𝜉)𝑝. (2.37) 

 

Note that 𝑋𝑖〈𝜉, 𝜈〉 is equal to 〈𝑋𝑖(𝜉), 𝜈〉, see the proof of Theorem 2.5.1. This 

expression |∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)|𝑝 = 𝒲(𝜉)𝑝  will be used later. For now we will 

estimate the following form  

 

 𝐸𝑝[𝑢]: = ∫ℍ+ |∇𝐻𝑢|
𝑝𝑑𝜉 − (

𝑝−1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉. (2.38) 

 

To estimate this, we introduce the following ground transform  

 

 𝑢(𝜉) = 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1

𝑝 𝑣(𝜉). (2.39) 

 

By inserting it into (2.38) and using (2.37), we have  

 

 𝐸𝑝[𝑢] = ∫ℍ+ |
𝑝−1

𝑝
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

−
1

𝑝∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)𝑣 +



 37 

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1

𝑝 ∇𝐻𝑣|
𝑝

𝑑𝜉 

 −(
𝑝−1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝
|𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

𝑝−1

𝑝 𝑣|𝑝𝑑𝜉 

 ≥ ∫
ℍ+
|
𝑝−1

𝑝
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

−
1

𝑝𝑣 +

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1

𝑝
∇𝐻𝑣

∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)
|
𝑝

|𝒲(𝜉)|𝑝 

 − |
𝑝−1

𝑝
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

−
1

𝑝𝑣|
𝑝

|𝒲(𝜉)|𝑝𝑑𝜉. 

 

Then for 𝑝 ≥ 2 and 𝐴, 𝐵 ∈ ℝ𝑛 we have that  

 

 |𝐴 + 𝐵|𝑝 − |𝐴|𝑝 ≥ 𝐶𝑝|𝐵|
𝑝 + 𝑝|𝐴|𝑝−2𝐴 ⋅ 𝐵, 

 

where 𝐶𝑝 = (2
𝑝−1 − 1)−1. By taking  

 

𝐴:=
𝑝 − 1

𝑝
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

−
1
𝑝𝑣   and   𝐵:= 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)

𝑝−1
𝑝

∇𝐻𝑣

∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)
, 

 

then we have the following lower estimate  

 

𝐸𝑝[𝑢] ≥ ∫
ℍ+
|𝒲(𝜉)|𝑝(|𝐴 + 𝐵|𝑝 − |𝐴|𝑝)𝑑𝜉 

≥ 𝐶𝑝∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝−1|∇𝐻𝑣|

𝑝
𝒲(𝜉)𝑝

|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)|𝑝

𝑑𝜉 

+(
𝑝 − 1

𝑝
)
𝑝−1

∫
ℍ+
|𝒲(𝜉)|𝑝|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)|𝑝−2(∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+) ⋅ ∇𝐻|𝑣|

𝑝)𝑑𝜉 

 ≥ 𝐶𝑝 ∫ℍ+ 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)𝑝−1|∇𝐻𝑣|

𝑝𝑑𝜉. 

 

In the last line we have used (2.37) and we dropped the last term on the right-hand 

side. This completes the proof of Lemma 2.6.1.  

Now we are ready to obtain the geometric Hardy-Sobolev inequality in the 

half-space on the Heisenberg group ℍ𝑛.   

T h e o r e m  2 . 6 . 2  Let ℍ+ be a half-space of the Heisenberg group ℍ𝑛. 

Then for every function 𝑢 ∈ 𝐶0
∞(ℍ+)  and 2 ≤ 𝑝 < 𝑄  with 𝑄 = 2𝑛 + 1 , there 

exists some 𝐶 > 0 such that we have  

 

(∫
ℍ+
|𝛻𝐻𝑢|

𝑝𝑑𝜉 − (
𝑝−1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉)

1

𝑝
≥ 𝐶(∫

ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

1

𝑝∗ , 

 (2.40) 

 

where 𝑝∗: = 𝑄𝑝/(𝑄 − 𝑝) and 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+): = 〈𝜉, 𝜈〉 − 𝑑 is the distance from 𝜉 to 
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the boundary. Note that for 𝑝 = 2 we have the Hardy-Sobolev-Maz'ya inequality in 

the following form  

 

(∫
ℍ+
|𝛻𝐻𝑢|

2𝑑𝜉 −
1

4
∫
ℍ+

𝒲(𝜉)2

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)2
|𝑢|2𝑑𝜉)

1

2
≥ 𝐶(∫

ℍ+
|𝑢|2

∗
𝑑𝜉)

1

2∗ ,   (2.41) 

 

where 2∗: = 2𝑄/(𝑄 − 2).  

P r o o f  o f  T h e o r e m  2 . 6 . 2 .  Our key ingredient of proving the 

Hardy-Sobolev inequality in the half-space of ℍ𝑛 is the 𝐿1-Sobolev inequality, or 

the Gagliardo-Nirenberg inequality. It has been established on the Heisenberg group 

by Baldi, Franchi, Pansu in [44]. 

The 𝐿1-Sobolev inequality on the Heisenberg group follows in the form  

 

𝑐 (∫
ℍ𝑛
|𝑔|

𝑄
𝑄−1𝑑𝜉)

𝑄−1
𝑄

≤ ∫
ℍ𝑛
|∇𝐻𝑔|𝑑𝜉, 

 

for some 𝑐 > 0, for every function 𝑔 ∈ 𝑊1,1(ℍ𝑛). Now let us set 𝑔 = |𝑢|𝑝
∗(1−1/𝑄), 

then we obtain  

 

𝑐 (∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

𝑄−1
𝑄

≤ |
𝑝(𝑄 − 1)

𝑄 − 𝑝
|∫
ℍ+
|𝑢|

𝑄(𝑝−1)
𝑄−𝑝 |∇𝐻|𝑢||𝑑𝜉, 

≤ |
𝑝(𝑄 − 1)

𝑄 − 𝑝
|∫
ℍ+
|𝑢|

𝑄𝑝
𝑄−𝑝

(𝑝−1)
𝑝 |∇𝐻𝑢|𝑑𝜉, 

= |
𝑝(𝑄 − 1)

𝑄 − 𝑝
|∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)|∇𝐻𝑢|𝑑𝜉. 

 

We have used |∇𝐻|𝑢|| ≤ |∇𝐻𝑢|. Then we arrive at  

 

𝐶1(∫ℍ+ |𝑢|
𝑝∗𝑑𝜉)

𝑄−1

𝑄 ≤ ∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)|∇𝐻𝑢|𝑑𝜉,         (2.42) 

 

where 𝐶1: = 𝑐 |
𝑄−𝑝

𝑝(𝑄−1)
| > 0. Let us estimate the right-hand side of inequality (2.42). 

Again we use a ground transform 𝑢(𝜉) = 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1

𝑝 𝑣(𝜉) which leads to  

 

∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)|∇𝐻𝑢|𝑑𝜉 

= ∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝) |𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1
𝑝 ∇𝐻𝑣

+
𝑝 − 1

𝑝
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)−1/𝑝∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)𝑣| 𝑑𝜉 



 39 

≤ ∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1
𝑝 |∇𝐻𝑣|𝑑𝜉 

+
𝑝 − 1

𝑝
∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝

∗(1−1/𝑝)2−1/𝑝|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)||𝑣|𝑝

∗(1−1/𝑝)+1𝑑𝜉 

= 𝐼1 +
𝑝 − 1

𝑝
𝐼2. 

 

In the last line we have denoted two integrals by 𝐼1 and 𝐼2, respectively. Also, for 

simplification we denote 𝛼:= 𝑝∗(1 − 1/𝑝)2 + 1 − 1/𝑝. First, we estimate 𝐼2 using 

integrations by parts 

 

 𝐼2 = ∫ℍ+ 𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)𝛼−1|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)||𝑣|𝛼𝑝/(𝑝−1)𝑑𝜉 

 =
1

𝛼
∫
ℍ+
〈∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)𝛼 , ∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)〉

|𝑣|𝛼𝑝/(𝑝−1)

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|
𝑑𝜉 

 = −
1

𝛼
∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝛼∇𝐻 (

∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|𝑣|𝛼𝑝/(𝑝−1)

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|

)𝑑𝜉 

 = −
1

𝛼
∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝛼 × 

 (
∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ

+)∇𝐻|𝑣|
𝛼𝑝/(𝑝−1)

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|

−
〈∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ

+),∇𝐻|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|〉|𝑣|𝛼𝑝/(𝑝−1)

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|2

)𝑑𝜉 

 = −
1

𝛼
∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝛼

∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)∇𝐻|𝑣|

𝛼𝑝/(𝑝−1)

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|

𝑑𝜉 

 ≤ −
𝑝

𝑝−1
∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝛼|𝑣|𝛼𝑝/(𝑝−1)−1|∇𝐻𝑣|𝑑𝜉 

 = −
𝑝

𝑝−1
∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)
𝑝−1

𝑝 |∇𝐻𝑣|𝑑𝜉 

 ≤
𝑝

𝑝−1
𝐼1. 

 

We have used |∇𝐻|𝑢|| ≤ |∇𝐻𝑢|, and  

 

ℒ𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+) =∑

𝑛

𝑖=1

𝑋𝑖〈𝑋𝑖(𝜉), 𝜈〉 + 𝑌𝑖〈𝑌𝑖(𝜉), 𝜈〉 = 0, 

since  

 

 〈𝑋𝑖(𝜉), 𝜈〉 = 𝜈𝑥,𝑖 + 2𝑦𝑖𝜈𝑡 , 〈𝑌𝑖(𝜉), 𝜈〉 = 𝜈𝑦,𝑖 − 2𝑥𝑖𝜈𝑡, 

 

 𝑋𝑖〈𝑋𝑖(𝜉), 𝜈〉 = 0, 𝑌𝑖〈𝑌𝑖(𝜉), 𝜈〉 = 0, 
 

 𝑌𝑖〈𝑋𝑖(𝜉), 𝜈〉 = 2𝜈𝑡 , 𝑋𝑖〈𝑌𝑖(𝜉), 𝜈〉 = −2𝜈𝑡 , 
 

where 𝜉:= (𝑥, 𝑦, 𝑡)  with 𝑥, 𝑦 ∈ ℝ𝑛  and 𝑡 ∈ ℝ , 𝜈:= (𝜈𝑥, 𝜈𝑦 , 𝜈𝑡)  with 𝜈𝑥: =

(𝜈𝑥,1, … 𝜈𝑥,𝑛) and 𝜈𝑦: = (𝜈𝑦,1, … 𝜈𝑦,𝑛). 

Also we have 
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 〈∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+), ∇𝐻|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)|〉 =
2𝜈𝑡

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|

 

 ((2𝑥1𝜈𝑡 − 𝜈𝑦,1)(𝜈𝑥,1 + 2𝑦1𝜈𝑡) + ⋯+ (2𝑥𝑛𝜈𝑡 − 𝜈𝑦,𝑛)(𝜈𝑥,𝑛 + 2𝑦𝑛𝜈𝑡)⏟                                          
𝑛

 

+(𝜈𝑦,1 − 2𝑥1𝜈𝑡)(𝜈𝑥,1 + 2𝑦1𝜈𝑡) + ⋯+ (𝜈𝑦,𝑛 − 2𝑥𝑛𝜈𝑡)(𝜈𝑥,𝑛 + 2𝑦𝑛𝜈𝑡)⏟                                          
𝑛

) = 0, 

 

since  

 

∇𝐻|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)| = (𝑋1|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)|,… , 𝑋𝑛|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)|, 

𝑌1|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+)|, … , 𝑌𝑛|∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ

+)|) 
 =
2𝜈𝑡

|∇𝐻𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ
+)|
(2𝑥1𝜈𝑡 − 𝜈𝑦,1, … ,2𝑥𝑛𝜈𝑡 − 𝜈𝑦,𝑛⏟                  

𝑛

, 𝜈𝑥,1 + 2𝑦1𝜈𝑡 , … , 𝜈𝑥,𝑛 + 2𝑦𝑛𝜈𝑡⏟                  
𝑛

), 

 

and  

 

∇𝐻𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ
+) = (𝜈𝑥,1 + 2𝑦1𝜈𝑡, … , 𝜈𝑥,𝑛 + 2𝑦𝑛𝜈𝑡⏟                  

𝑛

, 𝜈𝑦,1 − 2𝑥1𝜈𝑡, … , 𝜈𝑦,𝑛 − 2𝑥𝑛𝜈𝑡⏟                  
𝑛

). 

 

As we see that integral 𝐼2 can be estimated by integral 𝐼1. From this estimation we 

know that  

 

 ∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)|∇𝐻𝑢|𝑑𝜉 ≤ 2𝐼1. (2.43) 

 

Now it comes to estimate 𝐼1 by using the Hölder inequality  

 

𝐼1 = ∫
ℍ+
{|𝑢|𝑝

∗(1−1/𝑝)}{𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)(𝑝−1)/𝑝|∇𝐻𝑣|}𝑑𝜉 

≤ (∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

1−1/𝑝

(∫
ℍ+
𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝−1|∇𝐻𝑣|

𝑝𝑑𝜉)

1/𝑝

 

≤ 𝐶𝑝
−1/𝑝

(∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

1−1/𝑝

(∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉

− (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉)

1/𝑝

. 

 

In the last line we have used Lemma 2.6.1. Inserting the estimate of 𝐼1 in (2.43), we 

arrive at  

 

∫
ℍ+
|𝑢|𝑝

∗(1−1/𝑝)|∇𝐻𝑢|𝑑𝜉 ≤ 
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2𝐶𝑝
−1/𝑝

(∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

1−1/𝑝

(∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉

− (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉)

1
𝑝

. 

 

Plugging the above estimate in (2.42), we have  

 

𝐶1 (∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

𝑄−1
𝑄

≤ 2𝐶𝑝
−1/𝑝

(∫
ℍ+
|𝑢|𝑝

∗
𝑑𝜉)

𝑝−1
𝑝

 

(∫
ℍ+
|∇𝐻𝑢|

𝑝𝑑𝜉 − (
𝑝 − 1

𝑝
)
𝑝

∫
ℍ+

𝒲(𝜉)𝑝

𝑑𝑖𝑠𝑡(𝜉, 𝜕ℍ+)𝑝
|𝑢|𝑝𝑑𝜉)

1
𝑝

. 

 

By collecting terms, we finish the proof of Theorem 2.6.2.  

Let us demonstrate our result in a particular case when 𝑝 = 2: 

C o r o l l a r y  2 . 6 . 4  Let ℍ+: = {𝜉 = (𝑥, 𝑦, 𝑡) ∈ ℍ𝑛|  𝑡 > 0} be a half-space 

of the Heisenberg group ℍ𝑛. Then for every function 𝑢 ∈ 𝐶0
∞(ℍ+) taking 𝑑 = 0 

we have  

 

 (∫
ℍ+
|𝛻𝐻𝑢|

2𝑑𝜉 − ∫
ℍ+

|𝑥|2+|𝑦|2

𝑡2
|𝑢|2𝑑𝜉)

1

2
≥ 𝐶(∫

ℍ+
|𝑢|2

∗
𝑑𝜉)

1

2∗ , (2.44) 

 

where 2∗: = 2𝑄/(𝑄 − 2), 𝑄 = 2𝑛 + 2, with 𝐶 > 0 independent of 𝑢.   

P r o o f  o f  C o r o l l a r y  2 . 6 . 4 .  We have the following left-invariant vector 

fields  

 

𝑋𝑖 =
𝜕

𝜕𝑥𝑖
+ 2𝑦𝑖

𝜕

𝜕𝑡
   and   𝑌𝑖 =

𝜕

𝜕𝑦𝑖
− 2𝑥𝑖

𝜕

𝜕𝑡
, 

 

with the commutator  

 

 [𝑋𝑖 , 𝑌𝑖] = −4
𝜕

𝜕𝑡
. 

 

Then for 𝜉 = (𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, 𝑡) and 𝜈 = (0,… ,0⏞  
𝑛

, 0, … ,0⏞  
𝑛

, 1), we get  

 

〈𝑋𝑖(𝜉), 𝜈〉 = 2𝑦𝑖    and   〈𝑌𝑖(𝜉), 𝜈〉 = −2𝑥𝑖 , 
 

where  

𝑋𝑖(𝜉) = (0,… ,1⏞  
𝑖

, … ,0, 0, … ,0⏞  
𝑛

, 2𝑦𝑖), 
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𝑌𝑖(𝜉) = (0,… ,0⏞  
𝑛

, 0, … ,1⏞  
𝑖

, … ,0, , −2𝑥𝑖). 
 

Thus, we arrive at  

 

 
𝒲(𝜉)2

𝑑𝑖𝑠𝑡(𝜉,𝜕ℍ+)2
= 4

|𝑥|2+|𝑦|2

𝑡2
. (2.45) 

 

Plugging the above expression into inequality (2.41) we obtain  

 

(∫
ℍ+
|∇𝐻𝑢|

2𝑑𝜉 − ∫
ℍ+

|𝑥|2 + |𝑦|2

𝑡2
|𝑢|2𝑑𝜉)

1
2

≥ 𝐶 (∫
ℍ+
|𝑢|2

∗
𝑑𝜉)

1
2∗

, 

 

showing (2.44).  

  

2.7  Geometric Hardy inequalities on starshaped sets 

In order to present the results on the starshaped domains, let us recall the 

definition of starshaped sets in a Carnot group 𝔾 = (ℝ𝑛,∘, 𝛿𝑡)  and related 

arguments.  

D e f i n i t i o n  2 . 7 . 1  [Starshapedness [45]] Let 𝛺 ⊂ 𝔾  be a 𝐶1  domain 

containing the identity 𝑒. Then 𝛺 is starshaped with respect to 𝑒 if for every 𝑥 ∈
𝜕𝛺 one has 

 

〈𝑍(𝑥), 𝑛(𝑥)〉 ≥ 0,   (2.46) 

 

where 𝑛 is the Riemannian outer normal to 𝜕𝛺. 

When the strict inequality holds, then Ω is said to be strictly starshaped with 

respect to 𝑒.  Here the vector fields 𝑍 are the infinitesimal generator of this group 

automorphism. This vector fields 𝑍 takes the form  

 

𝑍 = ∑𝑁𝑖=1 𝑥′𝑖
𝜕

𝜕𝑥′𝑖
+ 2∑

𝑁2
𝑙=1 𝑥2,𝑙

𝜕

𝜕𝑥2,𝑙
+⋯+ 𝑟∑

𝑁𝑟
𝑙=1 𝑥𝑟,𝑙

𝜕

𝜕𝑥𝑟,𝑙
. (2.47) 

 

Then for 𝑥′ ∈ ℝ𝑁 and 𝑥(𝑖) ∈ ℝ𝑁𝑖 with 𝑖 = 2,… , 𝑟 we have  

 

 𝑍(𝑥) = (𝑥′, 2𝑥(2), ⋯ , 𝑟𝑥(𝑟)), (2.48) 

 

and  

 

 〈𝑍(𝑥), 𝑛(𝑥)〉 = 𝑥′𝑛′ + 2𝑥(2)𝑛(2) +⋯+ 𝑟𝑥(𝑟)𝑛(𝑟) 
 = 𝑥′1𝑛′1 +⋯+ 𝑥′𝑁𝑛′𝑁 + 2(𝑥2,1𝑛2,1 +⋯+ 𝑥2,𝑁2𝑛2,𝑁2) 

 +⋯+ 𝑟(𝑥𝑟,1𝑛𝑟,1 +⋯+ 𝑥𝑟,𝑁𝑟𝑛𝑟,𝑁𝑟), 

 

since 𝑛(𝑥):= (𝑛′, 𝑛(2), … , 𝑛(𝑟)) with 𝑛′ ∈ ℝ𝑁 and 𝑛(𝑖) ∈ ℝ𝑁𝑖 , 𝑖 = 2,… , 𝑟. 
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Based on the above arguments now we present the geometric Hardy 

inequalities on the starshaped sets for the sub-Laplacians.  

T h e o r e m  2 . 7 . 2  Let 𝛺 be a starshaped set on a Carnot group. Then for 

every 𝛾 ∈ ℝ and 𝑝 > 1 we have the following Hardy inequality  

 

∫
𝛺
|𝛻𝐻𝑓(𝑥)|

𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛾|
𝑝

𝑝−1 + 𝛾)∫
𝛺

|𝛻𝐻〈𝑍(𝑥),𝑛(𝑥)〉|
𝑝

|〈𝑍(𝑥),𝑛(𝑥)〉|𝑝
|𝑓(𝑥)|𝑝𝑑𝑥 (2.49) 

+𝛾∫
𝛺

ℒ𝑝(〈𝑍(𝑥), 𝑛(𝑥)〉)

|〈𝑍(𝑥), 𝑛(𝑥)〉|𝑝−1
|𝑓(𝑥)|𝑝𝑑𝑥, 

 

for every function 𝑓 ∈ 𝐶0
∞(𝛺).  

P r o o f  o f  T h e o r e m  2 . 7 . 2 .  The approach to prove the main results is 

based on [46]. For a vector field 𝑔 ∈ 𝐶∞(Ω) we compute  

 

∫
Ω

d𝑖𝑣𝑋𝑔|𝑓(𝑥)|
𝑝𝑑𝑥 = −𝑝∫

Ω

|𝑓(𝑥)|𝑝−1〈𝑔, ∇𝑋𝑓(𝑥)〉𝑑𝑥 

≤ 𝑝(∫
Ω

|∇𝑋𝑓(𝑥)|
𝑝𝑑𝑥)

1
𝑝

(∫
Ω

|𝑔|
𝑝
𝑝−1|𝑓(𝑥)|𝑝𝑑𝑥)

𝑝−1
𝑝

 

≤ ∫
Ω

|∇𝐻𝑓(𝑥)|
𝑝𝑑𝑥 + (𝑝 − 1)∫

Ω

|𝑔|
𝑝
𝑝−1|𝑓(𝑥)|𝑝𝑑𝑥. 

 

Here we have first used the divergence theorem, then we applied the Hölder 

inequality and the Young inequality. By rearranging the above expression, we arrive 

at  

 ∫
Ω
|∇𝑋𝑓(𝑥)|

𝑝𝑑𝑥 ≥ ∫
Ω
(d𝑖𝑣𝑋𝑔 − (𝑝 − 1)|𝑔|

𝑝

𝑝−1)|𝑓(𝑥)|𝑝𝑑𝑥. (2.50) 

 

A suitable choice of the vector field 𝑔 in each special case is a key argument of our 

proofs. Let us set  

 

𝑔 = 𝛾
|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|

𝑝−2

|〈𝑍(𝑥), 𝑛(𝑥)〉|𝑝−1
∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉, 

 

so that we have  

 |𝑔|
𝑝

𝑝−1 = |𝛾|
𝑝

𝑝−1
|∇𝐻〈𝑍(𝑥),𝑛(𝑥)〉|

𝑝

|〈𝑍(𝑥),𝑛(𝑥)〉|𝑝
, (2.51) 

 

and  

 

 d𝑖𝑣𝐻𝑔 = 𝛾
ℒ𝑝(〈𝑍(𝑥),𝑛(𝑥)〉)

|〈𝑍(𝑥),𝑛(𝑥)〉|𝑝−1
− 𝛾(𝑝 − 1)

|∇𝐻〈𝑍(𝑥),𝑛(𝑥)〉|
𝑝

|〈𝑍(𝑥),𝑛(𝑥)〉|𝑝
. (2.52) 

 

Plugging the above expressions (2.51) and (2.52) into inequality (2.50), we get  
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∫
Ω

|∇𝐻𝑓(𝑥)|
𝑝𝑑𝑥 ≥ −(𝑝 − 1)(|𝛾|

𝑝
𝑝−1 + 𝛾)∫

Ω

|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝

|〈𝑍(𝑥), 𝑛(𝑥)〉|𝑝
|𝑓(𝑥)|𝑝𝑑𝑥 

+𝛾∫
Ω

ℒ𝑝(〈𝑍(𝑥), 𝑛(𝑥)〉)

|〈𝑍(𝑥), 𝑛(𝑥)〉|𝑝−1
|𝑓(𝑥)|𝑝𝑑𝑥, 

 

which proves inequality (2.49).  

C o r o l l a r y  2 . 7 . 3  Let ℍ∗ be a starshaped set on the Heisenberg group ℍ1. 

Then for 𝑝 > 1, we have the following Hardy inequality  

 

 ∫
ℍ∗
|𝛻𝐻𝑓(𝑥)|

𝑝𝑑𝑥 ≥ (
𝑝−1

𝑝
)
𝑝

∫
ℍ∗

|(𝑛1+4𝑥2𝑛3,𝑛2−4𝑥1𝑛3)|
𝑝

|𝑥1𝑛1+𝑥2𝑛2+2𝑥3𝑛3|
𝑝
|𝑓(𝑥)|𝑝𝑑𝑥, (2.53) 

 

for every function 𝑓 ∈ 𝐶0
∞(ℍ∗).  

P r o o f  o f  C o r o l l a r y  2 . 7 . 3 . We begin the proof of Corollary 2.7.3 by a 

simple computation such as  

 

 〈𝑍(𝑥), 𝑛(𝑥)〉 = 𝑥1𝑛1 + 𝑥2𝑛2 + 2𝑥3𝑛3, 
 

 ∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉 = (𝑛1 + 4𝑥2𝑛3, 𝑛2 − 4𝑥1𝑛3), 
 

 |∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝 = ((𝑛1 + 4𝑥2𝑛3)

2 + (𝑛2 − 4𝑥1𝑛3)
2)𝑝/2, 

 

and  

 

 ℒ𝑝〈𝑍(𝑥), 𝑛(𝑥)〉 = ∇𝐻 ⋅ (|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝−2∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉) 

 

 = 𝑋1(|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝−2(𝑛1 + 4𝑥2𝑛3)) 

 

 +𝑋2(|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝−2(𝑛2 − 4𝑥1𝑛3)) 

 = −4(𝑝 − 2)|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝−4(𝑛1 + 4𝑥2𝑛3)(𝑛2 − 4𝑥1𝑛3)𝑛3 

 

 +4(𝑝 − 2)|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
𝑝−4(𝑛2 − 4𝑥1𝑛3)(𝑛1 + 2𝑥4𝑛3)𝑛3 

 

 = 0. 
 

Plugging the above expressions into inequality (2.49) and maximising with respect to 

𝛾, we arrive at inequality (2.53) which proves Corollary 2.7.3. 

C o r o l l a r y  2 . 7 . 4  Let 𝔼∗ be a starshaped set on the Engel group 𝔼. Then 

for every function 𝑓 ∈ 𝐶0
∞(𝔼∗), 𝛾 ∈ ℝ and 𝑝 = 2, we have  

 

 ∫
𝔼∗
|𝛻𝐻𝑓(𝑥)|

2𝑑𝑥 ≥ −(|𝛾|2 + 𝛾)∫
𝔼∗

|𝛻𝐻〈𝑍(𝑥),𝑛(𝑥)〉|
2

〈𝑍(𝑥),𝑛(𝑥)〉2
|𝑓(𝑥)|2𝑑𝑥 (2.54) 

+
𝛾

2
∫
𝔼∗

𝑥2𝑛4
〈𝑍(𝑥), 𝑛(𝑥)〉

|𝑓(𝑥)|2𝑑𝑥. 
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P r o o f  o f  C o r o l l a r y  2 . 7 . 4 .  We begin the proof of Corollary 2.7.4 by a 

simple computation such as  

 

〈𝑍(𝑥), 𝑛(𝑥)〉 = 𝑥1𝑛1 + 𝑥2𝑛2 + 2𝑥3𝑛3 + 3𝑥4𝑛4, 
 

∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉 = (𝑛1 − 𝑥2𝑛3 −
3𝑥3𝑛4
2

−
𝑥1𝑥2𝑛4
4

, 𝑛2 + 𝑥1𝑛3 +
𝑥1
2𝑛4
4
), 

 

|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
2 = (𝑛1 − 𝑥2𝑛3 −

3𝑥3𝑛4
2

−
𝑥1𝑥2𝑛4
4

)
2

+ (𝑛2 + 𝑥1𝑛3 +
𝑥1
2𝑛4
4
)

2

, 

 

and  

 

ℒ〈𝑍(𝑥), 𝑛(𝑥)〉 = ∇𝐻 ⋅ ∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉 

= 𝑋1 (𝑛1 − 𝑥2𝑛3 −
3𝑥3𝑛4
2

−
𝑥1𝑥2𝑛4
4

) + 𝑋2 (𝑛2 + 𝑥1𝑛3 +
𝑥1
2𝑛4
4
) 

=
𝑥2𝑛4
2
. 

 

Plugging the above expressions into inequality (2.49)  

 

∫
𝔼∗
|∇𝐻𝑓(𝑥)|

2𝑑𝑥 ≥ −(|𝛾|2 + 𝛾)∫
𝔼∗

|∇𝐻〈𝑍(𝑥), 𝑛(𝑥)〉|
2

〈𝑍(𝑥), 𝑛(𝑥)〉2
|𝑓(𝑥)|2𝑑𝑥 

+
𝛾

2
∫
𝔼∗

𝑥2𝑛4
〈𝑍(𝑥), 𝑛(𝑥)〉

|𝑓(𝑥)|2𝑑𝑥, 

 

which proves Corollary 2.7.4.  
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3 HORIZONTAL HARDY AND RELLICH INEQUALITIES 

 

In this chapter, we discuss versions of Hardy and Rellich type inequalities on 

the stratified groups with the Euclidean distance on the first stratum of the stratified 

group. 

 

3.1 Horizontal anisotropic Hardy and Rellich inequalities  

In this section, the anisotropic versions of horizontal Hardy and Rellich 

inequalities are discussed, where they appear in the analysis of anisotropic 

𝑝-sub-Laplacians. To put the notions in perspective, we start by recalling the 

Euclidean counterparts of the appearing objects. 

Let us recall the anisotropic Laplacian on ℝ𝑁 which is defined by  

 

 ∑𝑁𝑖=1
𝜕

𝜕𝑥𝑖
(|
𝜕𝑢

𝜕𝑥𝑖
|
𝑝𝑖−2 𝜕𝑢

𝜕𝑥𝑖
), (3.1) 

 

for 𝑝𝑖 > 1 where 𝑖 = 1,… ,𝑁 [47]. Note that by taking 𝑝𝑖 = 2 or 𝑝𝑖 = 𝑝 = 𝑐𝑜𝑛𝑠𝑡 
in (3.1) we get the Laplacian and the pseudo-𝑝 -Laplacian, respectively. The 

anisotropic Laplacian has the theoretical importance not only in mathematics but also 

many practical applications in the natural sciences. There are several examples: it 

reflects anisotropic physical properties of some reinforced materials Lions [48] and 

Tang [49], as well as explains the dynamics of fluids in the anisotropic media when 

the conductivities of the media are different in each direction [50, 51]. It has also 

applications in image processing [52]. 

Here we present the horizontal anisotropic Picone type identity on a stratified 

group 𝔾. 

L e m m a  3 . 1 . 1  Let 𝜴 ⊂ 𝔾 be an open set, where 𝔾 is a stratified group 

with 𝑵 being the dimension of the first stratum. Let 𝒖, 𝒗 be differentiable a.e. in 𝜴, 

𝒗 > 𝟎 a.e. in 𝜴 and 𝒖 ≥ 𝟎, and denote  
 

 𝑅(𝑢, 𝑣):= ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑋𝑖 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣, (3.2) 

  

 𝐿(𝑢, 𝑣):= ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣𝑋𝑖𝑢 

 +∑𝑁𝑖=1 (𝑝𝑖 − 1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖𝑣|

𝑝𝑖 , (3.3) 

 

where 𝑝𝑖 > 1, 𝑖 = 1,… ,𝑁. Then  

 

 𝐿(𝑢, 𝑣) = 𝑅(𝑢, 𝑣) ≥ 0. (3.4) 

 

In addition, for simply connected 𝛺 we have 𝐿(𝑢, 𝑣) = 0 a.e. in 𝛺 if and only if 

𝑢 = 𝑐𝑣 a.e. in 𝛺 with a positive constant 𝑐.     

R e m a r k  3 . 1 . 2  Note that the Euclidean case of Lemma 3.1.1 was obtained by 

Feng and Cui.  
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Note that the proof of Lemma 3.1.1 is based on the method of Allegretto and Huang 

[53] for the 𝑝-Laplacian.  

P r o o f  o f  L e m m a  3 . 1 . 1 .  A direct computation gives  

 

 𝑅(𝑢, 𝑣) = ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑋𝑖 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣 

 = ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1

𝑝𝑖𝑢
𝑝𝑖−1𝑋𝑖𝑢𝑣

𝑝𝑖−1−𝑢𝑝𝑖(𝑝𝑖−1)𝑣
𝑝𝑖−2𝑋𝑖𝑣

(𝑣𝑝𝑖−1)2
|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣 

 = ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣𝑋𝑖𝑢 + ∑
𝑁
𝑖=1 (𝑝𝑖 −

                            − 

1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖𝑣|

𝑝𝑖  

 = 𝐿(𝑢, 𝑣). 
 

This proves the equality in (3.4). Now we rewrite 𝐿(𝑢, 𝑣) to see 𝐿(𝑢, 𝑣) ≥ 0, that 

is,  

 

 𝐿(𝑢, 𝑣) = ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−1|𝑋𝑖𝑢| + ∑
𝑁
𝑖=1 (𝑝𝑖 −

1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖𝑣|

𝑝𝑖  

 +∑𝑁𝑖=1 𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2(|𝑋𝑖𝑣||𝑋𝑖𝑢| − 𝑋𝑖𝑣𝑋𝑖𝑢) 

 = 𝑆1 + 𝑆2, 
 

where we denote  

 𝑆1: = ∑
𝑁
𝑖=1 𝑝𝑖 [

1

𝑝𝑖
|𝑋𝑖𝑢|

𝑝𝑖 +
𝑝𝑖−1

𝑝𝑖
((
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1

)

𝑝𝑖
𝑝𝑖−1

] 

 −∑𝑁𝑖=1 𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−1|𝑋𝑖𝑢|, 

 

and  

 𝑆2: = ∑
𝑁
𝑖=1 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2(|𝑋𝑖𝑣||𝑋𝑖𝑢| − 𝑋𝑖𝑣𝑋𝑖𝑢). 

 

We can see that 𝑆2 ≥ 0 due to |𝑋𝑖𝑣||𝑋𝑖𝑢| ≥ 𝑋𝑖𝑣𝑋𝑖𝑢. To check 𝑆1 ≥ 0 we need to 

use Young's inequality for 𝑎 ≥ 0 and 𝑏 ≥ 0  

 

 𝑎𝑏 ≤
𝑎𝑝𝑖

𝑝𝑖
+
𝑏𝑞𝑖

𝑞𝑖
, (3.5) 

 

where 𝑝𝑖 > 1, 𝑞𝑖 > 1 and 
1

𝑝𝑖
+

1

𝑞𝑖
= 1 for 𝑖 = 1,… ,𝑁. It holds if and only if 𝑎𝑝𝑖 =

𝑏𝑞𝑖, i.e. if 𝑎 = 𝑏
1

𝑝𝑖−1. Let us take 𝑎 = |𝑋𝑖𝑢| and 𝑏 = (
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1
 in (3.5) to get  
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 𝑝𝑖|𝑋𝑖𝑢| (
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1
≤ 𝑝𝑖 [

1

𝑝𝑖
|𝑋𝑖𝑢|

𝑝𝑖 +
𝑝𝑖−1

𝑝𝑖
((
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1

)

𝑝𝑖
𝑝𝑖−1

]. (3.6) 

 

From this we see that 𝑆1 ≥ 0 which proves that 𝐿(𝑢, 𝑣) = 𝑆1 + 𝑆2 ≥ 0. It is easy to 

see that 𝑢 = 𝑐𝑣 implies 𝑅(𝑢, 𝑣) = 0. Now let us prove that 𝐿(𝑢, 𝑣) = 0 implies 

𝑢 = 𝑐𝑣 . Due to 𝑢(𝑥) ≥ 0  and 𝐿(𝑢, 𝑣)(𝑥0) = 0,    𝑥0 ∈ Ω,  we consider the two 

cases 𝑢(𝑥0) > 0 and 𝑢(𝑥0) = 0. 
For the case 𝑢(𝑥0) > 0 we conclude from 𝐿(𝑢, 𝑣)(𝑥0) = 0 that 𝑆1 = 0 and 

𝑆2 = 0. Then 𝑆1 = 0 implies  

 

 |𝑋𝑖𝑢| =
𝑢

𝑣
|𝑋𝑖𝑣|,    𝑖 = 1,… ,𝑁, (3.7) 

 

and 𝑆2 = 0 implies  

 

 |𝑋𝑖𝑣||𝑋𝑖𝑢| − 𝑋𝑖𝑣𝑋𝑖𝑢 = 0,    𝑖 = 1,… , 𝑁. (3.8) 

 

The combination of (3.7) and (3.8) gives  

 

 
𝑋𝑖𝑢

𝑋𝑖𝑣
=
𝑢

𝑣
= 𝑐,    with    𝑐 ≠ 0,    𝑖 = 1,… ,𝑁. (3.9) 

 

Let us denote Ω∗: = {𝑥 ∈ Ω|𝑢(𝑥) = 0}. If Ω∗ ≠ Ω, then suppose that 𝑥0 ∈
𝜕Ω∗. Then there exists a sequence 𝑥𝑘 ∉ Ω

∗ such that 𝑥𝑘 → 𝑥0. In particular, 

𝑢(𝑥𝑘) ≠ 0, and hence by the case 1 we have 𝑢(𝑥𝑘) = 𝑐𝑣(𝑥𝑘). Passing to the limit 

we get 𝑢(𝑥0) = 𝑐𝑣(𝑥0). Since 𝑢(𝑥0) = 0,    𝑣(𝑥0) ≠ 0, we get that 𝑐 = 0. But then 

by the case 1 again, since 𝑢 = 𝑐𝑣 and 𝑢 ≠ 0 in Ω\Ω∗, it is impossible that 𝑐 = 0. 

This contradiction implies that Ω∗ = Ω.  

This completes the proof of Lemma 3.1.1.  

Also, we present the (second order) horizontal anisotropic Picone type identity.   

L e m m a  3 . 1 . 3  Let 𝛺 ⊂ 𝔾 be an open set, where 𝔾 is a stratified group 

with 𝑁 being the dimension of the first stratum. Let 𝑢, 𝑣 be twice differentiable a.e. 

in 𝛺 and satisfying the following conditions: 𝑢 ≥ 0, 𝑣 > 0, 𝑋𝑖
2𝑣 < 0 a.e. in 𝛺 

for 𝑝𝑖 > 1, 𝑖 = 1,… ,𝑁. Then we have  

 

 𝐿1(𝑢, 𝑣) = 𝑅1(𝑢, 𝑣) ≥ 0, (3.10) 

 

where  

 

 𝑅1(𝑢, 𝑣):= ∑
𝑁
𝑖=1 |𝑋𝑖

2𝑢|𝑝𝑖 − ∑𝑁𝑖=1 𝑋𝑖
2 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣, 

 

and  

 𝐿1(𝑢, 𝑣):= ∑
𝑁
𝑖=1 |𝑋𝑖

2𝑢|𝑝𝑖 − ∑𝑁𝑖=1 𝑝𝑖 (
𝑢

𝑣
)
𝑝𝑖−1

𝑋𝑖
2𝑢𝑋𝑖

2𝑣|𝑋𝑖
2𝑣|𝑝𝑖−2 
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 +∑𝑁𝑖=1 (𝑝𝑖 − 1) (
𝑢

𝑣
)
𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖  

 −∑𝑁𝑖=1 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 (𝑋𝑖𝑢 −
𝑢

𝑣
𝑋𝑖𝑣)

2
. 

 

P r o o f  o f  L e m m a  3 . 1 . 3 .  A direct computation gives  

 

 𝑋𝑖
2 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) = 𝑋𝑖 (𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖𝑢 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖𝑣) 

 = 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−2
(
(𝑋𝑖𝑢)𝑣−𝑢(𝑋𝑖𝑣)

𝑣2
)𝑋𝑖𝑢 + 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢 

 −𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
(
(𝑋𝑖𝑢)𝑣−𝑢(𝑋𝑖𝑣)

𝑣2
)𝑋𝑖𝑣 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖
2𝑣 

 = 𝑝𝑖(𝑝𝑖 − 1) (
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖𝑢|

2 − 2
𝑢𝑝𝑖−1

𝑣𝑝𝑖
𝑋𝑖𝑣𝑋𝑖𝑢 +

𝑢𝑝𝑖

𝑣𝑝𝑖+1
|𝑋𝑖𝑣|

2) 

 +𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖
2𝑣 

 = 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
(𝑋𝑖𝑢 −

𝑢

𝑣
𝑋𝑖𝑣)

2
+ 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖
2𝑣, 

 

which gives (3.10). By the Young inequality we have  

 

 
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢𝑋𝑖

2𝑣|𝑋𝑖
2𝑣|𝑝𝑖−2 ≤

|𝑋𝑖
2𝑢|𝑝𝑖

𝑝𝑖
+

1

𝑞𝑖

𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖 ,    𝑖 = 1,… , 𝑁, 

 

where 𝑝𝑖 > 1, 𝑞𝑖 > 1 
1

𝑝𝑖
+

1

𝑞𝑖
= 1. Since 𝑋𝑖

2𝑣 < 0 we arrive at  

 

 𝐿1(𝑢, 𝑣) ≥ ∑
𝑁
𝑖=1 |𝑋𝑖

2𝑢|𝑝𝑖 + ∑𝑁𝑖=1 (𝑝𝑖 − 1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖 −

∑𝑁𝑖=1 𝑝𝑖 (
|𝑋𝑖
2𝑢|𝑝𝑖

𝑝𝑖
+

1

𝑞𝑖

𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖) 

 −∑𝑁𝑖=1 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 |𝑋𝑖𝑢 −
𝑢

𝑣
𝑋𝑖𝑣|

2
 

 = ∑𝑁𝑖=1 (𝑝𝑖 − 1 −
𝑝𝑖

𝑞𝑖
)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖  

 −∑𝑁𝑖=1 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 |𝑋𝑖𝑢 −
𝑢

𝑣
𝑋𝑖𝑣|

2
≥ 0. 

 

This completes the proof of Lemma 3.1.3.  

As a consequence of the horizontal anisotropic Picone type identity, we present 

the horizontal Hardy type inequality for the anisotropic sub-Laplacian on 𝔾. Let us 

recall that 𝑥 = (𝑥′, 𝑥′′) ∈ 𝔾 with 𝑥′ being in the first stratum of 𝔾.  

T h e o r e m  3 . 1 . 4  Let 𝛺 ⊂ 𝔾\{𝑥′ = 0}  be an open set, where 𝔾  is a 

stratified group with 𝑁 being the dimension of the first stratum. Then we have  

 

 ∑𝑁𝑖=1 ∫𝛺 |𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 ≥ ∑𝑁𝑖=1 (

𝑝𝑖−1

𝑝𝑖
)
𝑝𝑖
∫
𝛺

|𝑢|𝑝𝑖

|𝑥′𝑖|
𝑝𝑖
𝑑𝑥, (3.11) 
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for all 𝑢 ∈ 𝐶1(𝛺) and where 1 < 𝑝𝑖 < 𝑁 for 𝑖 = 1,… ,𝑁.   

Before we start the proof of Theorem 3.1.4, let us establish the following 

Lemma 3.1.5.   

L e m m a  3 . 1 . 5  Let 𝛺 ⊂ 𝔾 be an open set, where 𝔾 is a stratified group 

with 𝑁 being the dimension of the first stratum. Let constants 𝐾𝑖 > 0 and functions 

𝐻𝑖(𝑥) with 𝑖 = 1,… ,𝑁, be such that for an a.e. differentiable function 𝑣, such that 

𝑣 > 0 a.e. in 𝛺, we have  

 

 −𝑋𝑖(|𝑋𝑖𝑣|
𝑝𝑖−2𝑋𝑖𝑣) ≥ 𝐾𝑖𝐻𝑖(𝑥)𝑣

𝑝𝑖−1,    𝑖 = 1,… , 𝑁. (3.12) 

 

 Then, for all nonnegative functions 𝑢 ∈ 𝐶1(𝛺) we have  

 

 ∑𝑁𝑖=1 ∫𝛺 |𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 ≥ ∑𝑁𝑖=1 𝐾𝑖 ∫𝛺 𝐻𝑖(𝑥)𝑢

𝑝𝑖𝑑𝑥. (3.13) 

 

P r o o f  o f  L e m m a  3 . 1 . 5 .  In view of (3.4) and (3.12) we have  

 

 0 ≤ ∫
Ω
𝐿(𝑢, 𝑣)𝑑𝑥 = ∫

Ω
𝑅(𝑢, 𝑣)𝑑𝑥 

 

 = ∑𝑁𝑖=1 ∫Ω |𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 ∫Ω 𝑋𝑖 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣𝑑𝑥 

 

 = ∑𝑁𝑖=1 ∫Ω |𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 + ∑𝑁𝑖=1 ∫Ω

𝑢𝑝𝑖

𝑣𝑝𝑖−1
𝑋𝑖(|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣)𝑑𝑥 

 

 ≤ ∑𝑁𝑖=1 ∫Ω |𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 𝐾𝑖 ∫Ω 𝐻𝑖(𝑥)𝑢

𝑝𝑖𝑑𝑥. 

 

This completes the proof of Lemma 3.1.5.  

P r o o f  o f  T h e o r e m  3 . 1 . 4 .  Before using Lemma 3.1.5, we shall introduce 

the auxiliary function  

 

 𝑣:= ∏𝑁𝑗=1 |𝑥′𝑗|
𝛼𝑗 = |𝑥′𝑖|

𝛼𝑖𝑉𝑖 , (3.14) 

 

 where 𝑉𝑖 = ∏
𝑁
𝑗=1,𝑗≠𝑖 |𝑥𝑗′|

𝛼𝑗 and 𝛼𝑗 =
𝑝𝑗−1

𝑝𝑗
. Then we have  

 

 𝑋𝑖𝑣 = 𝛼𝑖𝑉𝑖|𝑥𝑖′|
𝛼𝑖−2𝑥′𝑖 , 

 |𝑋𝑖𝑣|
𝑝𝑖−2 = 𝛼𝑖

𝑝𝑖−2𝑉𝑖
𝑝𝑖−2|𝑥𝑖′|

𝛼𝑖𝑝𝑖−2𝛼𝑖−𝑝𝑖+2, 
 

 |𝑋𝑖𝑣|
𝑝𝑖−2𝑋𝑖𝑣 = 𝛼𝑖

𝑝𝑖−1𝑉𝑖
𝑝𝑖−1|𝑥𝑖′|

𝛼𝑖𝑝𝑖−𝛼𝑖−𝑝𝑖𝑥𝑖′. 
 

Consequently, we also have  

 

 −𝑋𝑖(|𝑋𝑖𝑣|
𝑝𝑖−2𝑋𝑖𝑣) = (

𝑝𝑖−1

𝑝𝑖
)
𝑝𝑖 𝑣𝑝𝑖−1

|𝑥𝑖′|
𝑝𝑖
. (3.15) 
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To complete the proof of Theorem 3.1.4, we choose 𝐾𝑖 = (
𝑝𝑖−1

𝑝𝑖
)
𝑝𝑖

 and 𝐻𝑖(𝑥) =
1

|𝑥𝑖′|
𝑝𝑖

, and use Lemma 3.1.5.  

Now we are ready to prove the anisotropic Rellich type inequality on 𝔾.   

T h e o r e m  3 . 1 . 6  Let 𝛺 ⊂ 𝔾\{𝑥′ = 0}  be an open set, where 𝔾  is a 

stratified group with 𝑁 being the dimension of the first stratum. Then for a function 

𝑢 ≥ 0, 𝑢 ∈ 𝐶2(𝛺), and 2 < 𝛼𝑖 < 𝑁 − 2 we have the following inequality 

  

 ∑𝑁𝑖=1 ∫𝛺 |𝑋𝑖
2𝑢|𝑝𝑖𝑑𝑥 ≥ ∑𝑁𝑖=1 𝐶𝑖(𝛼𝑖 , 𝑝𝑖) ∫𝛺

|𝑢|𝑝𝑖

|𝑥𝑖′|
2𝑝𝑖
𝑑𝑥, (3.16) 

 

where 1 < 𝑝𝑖 < 𝑁 for 𝑖 = 1,… ,𝑁, and  

 

𝐶𝑖(𝛼𝑖 , 𝑝𝑖) = (𝛼𝑖(𝛼𝑖 − 1))
𝑝𝑖−1(𝛼𝑖𝑝𝑖 − 2𝑝𝑖 − 𝛼𝑖 + 2)(𝛼𝑖𝑝𝑖 − 2𝑝𝑖 − 𝛼𝑖 + 1). 

 

P r o o f  o f  T h e o r e m  3 . 1 . 6 .  We introduce the auxiliary function  

 

 𝑣:= ∏𝑁𝑗=1 |𝑥𝑗′|
𝛼𝑗 = |𝑥𝑖′|

𝛼𝑖𝑉𝑖 , 

 

we choose 𝛼𝑗 later, and let 𝑉𝑖 = ∏
𝑁
𝑗=1,𝑗≠𝑖 |𝑥𝑗′|

𝛼𝑗. Then we have  

 

 𝑋𝑖
2𝑣 = 𝑋𝑖(𝛼𝑖𝑉𝑖|𝑥𝑖′|

𝛼𝑖−2𝑥𝑖′) = 𝛼𝑖(𝛼𝑖 − 1)𝑉𝑖|𝑥𝑖′|
𝛼𝑖−2, 

 

 |𝑋𝑖
2𝑣|𝑝𝑖−2 = (𝛼𝑖(𝛼𝑖 − 1))

𝑝𝑖−2𝑉𝑖
𝑝𝑖−2|𝑥𝑖′|

𝛼𝑖𝑝𝑖−2𝑝𝑖−2𝛼𝑖+4, 
 

 |𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 = (𝛼𝑖(𝛼𝑖 − 1))
𝑝𝑖−1𝑉𝑖

𝑝𝑖−1|𝑥𝑖′|
𝛼𝑖𝑝𝑖−2𝑝𝑖−𝛼𝑖+2. 

 

Consequently, we obtain  

 

 𝑋𝑖
2(|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣) = (𝛼𝑖(𝛼𝑖 − 1))

𝑝𝑖−1𝑉𝑖
𝑝𝑖−1𝑋𝑖

2(|𝑥𝑖′|
𝛼𝑖𝑝𝑖−2𝑝𝑖−𝛼𝑖+2) 

 

 = (𝛼𝑖(𝛼𝑖 − 1))
𝑝𝑖−1(𝛼𝑖𝑝𝑖 − 2𝑝𝑖 − 𝛼𝑖 + 2)𝑉𝑖

𝑝𝑖−1𝑋𝑖(|𝑥𝑖′|
𝛼𝑖𝑝𝑖−2𝑝𝑖−𝛼𝑖𝑥𝑖′) 

 

 = (𝛼𝑖(𝛼𝑖 − 1))
𝑝𝑖−1(𝛼𝑖𝑝𝑖 − 2𝑝𝑖 − 𝛼𝑖 + 2)(𝛼𝑖𝑝𝑖 − 2𝑝𝑖 − 𝛼𝑖 + 1) 

 

 × 𝑉𝑖
𝑝𝑖−1|𝑥𝑖′|

𝛼𝑖(𝑝𝑖−1)−2𝑝𝑖 . 
 

Thus, for twice differentiable function 𝑣 > 0 a.e. in Ω with 𝑋𝑖
2𝑣 < 0 we have  

 

 𝑋𝑖
2(|𝑋𝑖

2|𝑝𝑖−2𝑋𝑖
2𝑣) = 𝐶𝑖(𝛼𝑖 , 𝑝𝑖)

𝑣𝑝𝑖−1

|𝑥′𝑖|
2𝑝𝑖

 (3.17) 
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a.e. in Ω. Using (3.17) we compute 

  

 0 ≤ ∫
Ω
𝐿1(𝑢, 𝑣)𝑑𝑥 = ∫Ω 𝑅1(𝑢, 𝑣)𝑑𝑥 

 

 = ∑𝑁𝑖=1 ∫Ω |𝑋𝑖
2𝑢|𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 ∫Ω 𝑋𝑖

2 (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣𝑑𝑥 

 

 = ∑𝑁𝑖=1 ∫Ω |𝑋𝑖
2𝑢|𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 ∫Ω

𝑢𝑝𝑖

𝑣𝑝𝑖−1
𝑋𝑖
2(|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣)𝑑𝑥 

 

 = ∑𝑁𝑖=1 ∫Ω |𝑋𝑖
2𝑢|𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 𝐶𝑖(𝛼𝑖 , 𝑝𝑖) ∫Ω

|𝑢|𝑝𝑖

|𝑥𝑖′|
2𝑝𝑖
𝑑𝑥. 

 

The proof of Theorem 3.1.6 is complete.  

 

3.2  Hardy type inequalities with multiple singularities 

In this section, the analogue of the Hardy inequality with multiple singularities 

are presented on a stratified group. The singularities are represented by a family 

{𝑎𝑘}𝑘=1
𝑚 ∈ 𝔾, where we write 𝑎𝑝 = (𝑎𝑘′, 𝑎𝑘′′), with 𝑎𝑘′ being in the first stratum 

of 𝔾. We can also write 𝑎𝑘′ = (𝑎𝑘1′, … , 𝑎𝑘𝑁′). From [29, Proposition 3.1.24] it 

follows that (𝑥𝑎𝑘
−1)′ = 𝑥′ − 𝑎𝑘′.   

T h e o r e m  3 . 2 . 1  Let 𝛺 ⊂ 𝔾 be an open set, where 𝔾 is a stratified group 

with 𝑁 being the dimension of the first stratum. Let 𝑁 ≥ 3, 𝑥 = (𝑥′, 𝑥′′) ∈ 𝔾 with 

𝑥′ = (𝑥′1, … , 𝑥′𝑁) being in the first stratum of 𝔾, and let 𝑎𝑘 ∈ 𝔾, 𝑘 = 1,… ,𝑚, be 

the singularities. Then we have  

 ∫
𝛺
|𝛻𝔾𝑢|

2𝑑𝑥 ≥ (
𝑁−2

2
)
2

∫
𝛺

∑𝑁𝑗=1 |∑
𝑚
𝑘=1

(𝑥𝑎𝑘
−1)𝑗′

|(𝑥𝑎𝑘
−1)′|𝑁

|

2

(∑𝑚𝑘=1
1

|(𝑥𝑎𝑘
−1)′|𝑁−2

)

2 |𝑢|
2𝑑𝑥, (3.18) 

 

for all 𝑢 ∈ 𝐶0
∞(𝛺).  

R e m a r k  3 . 2 . 2  The Euclidean case of this inequality was obtained by 

Kapitanski and Laptev [54]. In (3.18), (𝑥𝑎𝑘
−1)′𝑗 = 𝑥𝑗′ − 𝑎𝑘𝑗′  denotes the jth 

component of 𝑥𝑎𝑘
−1.  

P r o o f  o f  T h e o r e m  3 . 2 . 1 .  Let us introduce a vector-field 𝒜(𝑥) =
(𝒜1(𝑥),… ,𝒜𝑁(𝑥))  to be specified later. Also let 𝜆  be a real parameter for 

optimisation. We start with the inequality  

 

 0 ≤ ∫
Ω
∑𝑁𝑗=1 (|𝑋𝑗𝑢 − 𝜆𝒜𝑗𝑢|

2)𝑑𝑥 

 

 = ∫
Ω
(|∇𝔾𝑢|

2 − 2𝜆Re∑𝑁𝑗=1 𝒜𝑗𝑢𝑋𝑗𝑢 + 𝜆
2∑𝑁𝑗=1 |𝒜𝑗|

2|𝑢|2)𝑑𝑥. 

 

By using the integration by parts we get 
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 −∫
Ω
(𝜆2∑𝑁𝑗=1 |𝒜𝑗|

2 + 𝜆d𝑖𝑣𝔾𝒜)|𝑢|
2𝑑𝑥 ≤ ∫

Ω
|∇𝔾𝑢|

2𝑑𝑥. (3.19) 

 

We differentiate the integral on the left-hand side with respect to 𝜆 for optimising it, 

yielding  

 

 2𝜆|𝒜|2 + d𝑖𝑣𝔾𝒜 = 0, 
 

for all 𝑥 ∈ Ω. This is a restriction on 𝒜(𝑥) giving 
d𝑖𝑣𝔾𝒜(𝑥)

|𝒜(𝑥)|2
= 𝑐𝑜𝑛𝑠𝑡. For 𝜆 =

1

2
 

we get 

 

 d𝑖𝑣𝔾𝒜(𝑥) = −|𝒜(𝑥)|
2. (3.20) 

 

Then putting (3.20) in (3.19) we have the following Hardy inequality  

 

 
1

4
∫
Ω
∑𝑁𝑗=1 |𝒜𝑗(𝑥)|

2|𝑢|2𝑑𝑥 ≤ ∫
Ω
|∇𝔾𝑢|

2𝑑𝑥. (3.21) 

 

Now if we assume that 𝒜 = ∇𝔾𝜙 for some function 𝜙, then (3.20) becomes 

  

 ℒ𝜙 + |∇𝔾𝜙|
2 = 0. 

 

It follows that the function is harmonic (with respect to the sub-Laplacian ).  

 

 𝑤 = 𝑒𝜙 ≥ 0. 

 

Then 𝑤 is a constant > 0 or has a singularity. Let us consider  

 

 𝑤:= ∑𝑚𝑘=1
1

|(𝑥𝑎𝑘
−1)′|𝑁−2

, 

 

and then take  

 

 𝜙(𝑥) = ln(𝑤). 
 

Therefore  

 

 𝒜(𝑥) = ∇𝔾(ln𝑤) =
1

𝑤
∇𝔾(∑

𝑚
𝑘=1 |(𝑥𝑎𝑘

−1)′|2−𝑁) 

 

 =
1

𝑤
∑𝑚𝑘=1 ∇𝔾(∑

𝑁
𝑗=1 ((𝑥𝑎𝑘

−1)𝑗′)
2)

2−𝑁

2  

 

 = −
𝑁−2

𝑤
(∑𝑚𝑘=1

(𝑥𝑎𝑘
−1)′

|(𝑥𝑎𝑘
−1)′|𝑁

), 
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and  

 |𝒜(𝑥)|2 = ∑𝑁𝑗=1 |𝒜𝑗(𝑥)|
2 = (

𝑁−2

𝑤
)
2
∑𝑁𝑗=1 |∑

𝑚
𝑘=1

(𝑥𝑎𝑘
−1)𝑗′

|(𝑥𝑎𝑘
−1)′|𝑁

|
2

. 

 

This completes the proof of Theorem 3.2.1.  

We then also obtain the corresponding uncertainty principle. 

C o r o l l a r y  3 . 2 . 3  Let 𝛺 ⊂ 𝔾 be an open set, where 𝔾 is a stratified group 

with 𝑁 being the dimension of the first stratum. Let 𝑁 ≥ 3, 𝑥 = (𝑥′, 𝑥′′) ∈ 𝔾 with 

𝑥′ = (𝑥′1, … , 𝑥′𝑁) being in the first stratum of 𝔾. Let 𝑎𝑘 ∈ 𝔾, 𝑘 = 1,… ,𝑚, be the 

singularities. Then we have  

 
𝑁−2

2
∫
𝛺
|𝑢|2𝑑𝑥 ≤ (∫

𝛺
|𝛻𝔾𝑢|

2𝑑𝑥)
1

2(∫
𝛺

(∑𝑚𝑘=1
1

|(𝑥𝑎𝑘
−1)′|𝑁−2

)

2

∑𝑁𝑗=1 |∑
𝑚
𝑘=1

(𝑥𝑎𝑘
−1)𝑗′

|(𝑥𝑎𝑘
−1)′|𝑁

|

2 |𝑢|
2𝑑𝑥)

1

2

, (3.22) 

 

for all 𝑢 ∈ 𝐶0
∞(𝛺) and 1 < 𝑝𝑖 < 𝑁 for 𝑖 = 1,… , 𝑁.   

P r o o f  o f  C o r o l l a r y  3 . 2 . 3 . By (3.18) and the Cauchy-Schwarz inequality 

we get  

 ∫
Ω
|∇𝔾𝑢|

2𝑑𝑥 ∫
Ω

(∑𝑚𝑘=1
1

|(𝑥𝑎𝑘
−1)′|𝑁−2

)

2

∑𝑁𝑗=1 |∑
𝑚
𝑘=1

(𝑥𝑎𝑘
−1)𝑗′

|(𝑥𝑎𝑘
−1)′|𝑁

|

2 |𝑢|
2𝑑𝑥 

 

 ≥ (
𝑁−2

2
)
2

∫
Ω

∑𝑁𝑗=1 |∑
𝑚
𝑘=1

(𝑥𝑎𝑘
−1)𝑗′

|(𝑥𝑎𝑘
−1)′|𝑁

|

2

(∑𝑚𝑘=1
1

|(𝑥𝑎𝑘
−1)′|𝑁−2

)

2 |𝑢|
2𝑑𝑥 ∫

Ω

(∑𝑚𝑘=1
1

|(𝑥𝑎𝑘
−1)′|𝑁−2

)

2

∑𝑁𝑗=1 |∑
𝑚
𝑘=1

(𝑥𝑎𝑘
−1)𝑗′

|(𝑥𝑎𝑘
−1)′|𝑁

|

2 |𝑢|
2𝑑𝑥 

 

 ≥ (
𝑁−2

2
)
2

(∫
Ω
|𝑢|2𝑑𝑥)

2
. 

 

The proof is complete.  

  

3.3  Many-particle Hardy type inequality 

In this section, we obtain the horizontal many-particle Hardy-type inequalities 

for 𝑛 ≥ 1 on the stratified groups. We consider that there are 𝑛 particles, where 𝑛 

is a positive integer. Let 𝔾𝑛 be the product  

 𝔾𝑛: = 𝔾 × …× 𝔾⏞      
𝑛

. 
 

We consider 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝔾
𝑛 ,  with 𝑥𝑗 ∈ 𝔾 . Let 𝑥 ∈ 𝔾𝑛  with 𝑥′ =

(𝑥′1, … , 𝑥′𝑛) and 𝑥′𝑖 = (𝑥′𝑖1, … , 𝑥′𝑖𝑁) being the coordinates on the first stratum of 

𝔾 for 𝑖 = 1,… , 𝑛. The distance between particles 𝑥𝑖 , 𝑥𝑗 ∈ 𝔾 can be defined by  
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 𝑟𝑖𝑗: = |(𝑥𝑖𝑥𝑗
−1)′| = |𝑥′𝑖 − 𝑥′𝑗| = √∑

𝑁
𝑘=1 (𝑥′𝑖𝑘 − 𝑥′𝑗𝑘)

2. 

 

We will use the following notation  

 

 ∇𝔾𝑖= (𝑋𝑖1, … , 𝑋𝑖𝑁) 

 

for the horizontal gradient associated to the 𝑖-th particle. We denote  

 

 ∇𝔾𝑛: = (∇𝔾1 , … , ∇𝔾𝑛), 

 

and  

 ℒ𝑖 = ∑
𝑁
𝑘=1 𝑋𝑖𝑘

2  

 

is the sub-Laplacian associated to the 𝑖-th particle. We note that  

 

 ℒ = ∑𝑁𝑖=1 ℒ𝑖 . 
 

We recall a simple but crucial inequality on ℝ𝑚 .   

L e m m a  3 . 3 . 1  Let 𝑚 ≥ 1, and let  

 

 𝒜 = (𝒜1(𝑥), … ,𝒜𝑚(𝑥)) 
 

be a mapping in 𝒜:ℝ𝑚 → ℝ𝑚 whose components and their first derivatives are 

uniformly bounded in ℝ𝑚. Then for 𝑢 ∈ 𝐶0
1(ℝ𝑚) we have  

 

 ∫
ℝ𝑚
|𝛻𝑢|2𝑑𝑥 ≥

1

4

(∫ℝ𝑚 𝑑𝑖𝑣𝒜|𝑢|
2𝑑𝑥)

2

∫ℝ𝑚 |𝒜|
2|𝑢|2𝑑𝑥

. (3.23) 

 

P r o o f  o f  L e m m a  3 . 3 . 1 .  We have  

 

 |∫
ℝ𝑚
d𝑖𝑣𝒜|𝑢|2𝑑𝑥| = 2|Re∫

ℝ𝑚
〈𝒜, ∇𝑢〉𝑢𝑑𝑥| 

 

 ≤ 2(∫
ℝ𝑚
|𝒜|2|𝑢|2𝑑𝑥)

1/2
(∫
ℝ𝑚
|∇𝑢|2𝑑𝑥)

1/2
. 

 

We have used the Cauchy-Schwarz inequality in the last line. The proof is finished by 

squaring this inequality.  

 T h e o r e m  3 . 3 . 2  Let 𝛺 ⊂ 𝔾𝑛 be an open set, where 𝔾 is a stratified 

group with 𝑁 being the dimension of the first stratum. Let 𝑁 ≥ 2 and 𝑛 ≥ 3. Let 

𝑟𝑖𝑗 = |(𝑥𝑖𝑥𝑗
−1)′| = |𝑥′𝑖 − 𝑥′𝑗|. Then we have 

 

 ∫
𝛺
|𝛻𝔾𝑛𝑢|

2𝑑𝑥 ≥
(𝑁−2)2

𝑛
∫
𝛺
∑1≤𝑖<𝑗≤𝑛

|𝑢|2

𝑟𝑖𝑗
2 𝑑𝑥, (3.24) 
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for all 𝑢 ∈ 𝐶1(𝛺).  

R e m a r k  3 . 3 . 3  The Euclidean case of inequality (3.24) is obtained by M. 

Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom [55].  

P r o o f  o f  T h e o r e m  3 . 3 . 2 .  Let us choose a mapping ℬ1 in the following 

form  

 

 ℬ1(𝑥′𝑖 , 𝑥′𝑗):=
(𝑥𝑖𝑥𝑗

−1)′

𝑟𝑖𝑗
2 ,    1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 

 

And putting the mapping ℬ1 in (3.23) we have  

 

 ∫
Ω
|(∇𝔾𝑖 − ∇𝔾𝑗)𝑢|

2𝑑𝑥 ≥
1

4

(∫Ω ((d𝑖𝑣𝔾𝑖−d𝑖𝑣𝔾𝑗)ℬ1)|𝑢|
2𝑑𝑥)

2

∫Ω |ℬ1|
2|𝑢|2𝑑𝑥

 

 

 =
1

4

(∫Ω
2(𝑁−2)

|(𝑥𝑖𝑥𝑗
−1)′|2

|𝑢|2𝑑𝑥)

2

∫Ω
|𝑢|2

|(𝑥𝑖𝑥𝑗
−1)′|2

𝑑𝑥
 

 = (𝑁 − 2)2 ∫
Ω

|𝑢|2

𝑟𝑖𝑗
2 𝑑𝑥. (3.25) 

 

Also, we introduce another mapping ℬ2  

 

 ℬ2(𝑥):=
∑𝑛𝑗=1𝑥′𝑗

|∑𝑛𝑗=1𝑥′𝑗|
2, 

 

and  

 

 d𝑖𝑣𝔾𝑖ℬ2 = ∇𝔾𝑖 ⋅ ℬ2 = ∑
𝑁
𝑘=1 𝑋𝑖𝑘 (

∑𝑛𝑗=1𝑥𝑗𝑘′

|∑𝑛𝑗=1𝑥𝑗′|
2) 

 

 =
𝑁𝑛|∑𝑛𝑗=1𝑥𝑗′|

2−2𝑛((∑𝑛𝑗=1𝑥𝑗1′)
2+⋯+(∑𝑛𝑗=1𝑥𝑗𝑁′)

2)

| ∑𝑛𝑗=1𝑥𝑗′|
4

 

 

 =
𝑁𝑛−2𝑛

|∑𝑛𝑗=1𝑥𝑗′|
2
. 

 

As before we put the mapping ℬ2 in (3.23) and using above computation yielding  

 

 ∫
Ω
|∑𝑛𝑖=1 ∇𝔾𝑖𝑢|

2
𝑑𝑥 ≥

1

4

(∫Ω (∑
𝑛
𝑖=1d𝑖𝑣𝔾𝑖ℬ2)|𝑢|

2𝑑𝑥)
2

∫Ω |ℬ2|
2|𝑢|2𝑑𝑥
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 =
1

4

(∫Ω ∑
𝑛
𝑖=1

𝑁𝑛−2𝑛

|∑𝑛𝑗=1𝑥𝑗′|
2|𝑢|

2𝑑𝑥)

2

∫Ω
|𝑢|2

|∑𝑛𝑗=1𝑥′𝑗|
2𝑑𝑥

 

 

 =
(𝑁−2)2𝑛4

4
∫
Ω

|𝑢|2

|∑𝑛𝑗=1𝑥′𝑗|
2 𝑑𝑥. (3.26) 

 

Adding inequalities (3.25) and (3.26) and using the identity  

 

 𝑛∑𝑛𝑖=1 |∇𝔾𝑖𝑢|
2 = ∑1≤𝑖<𝑗≤𝑛 |∇𝔾𝑖𝑢 − ∇𝔾𝑗𝑢|

2
+ |∑𝑛𝑖=1 ∇𝔾𝑖𝑢|

2
, 

 

we arrive at  

∑𝑛𝑖=1 ∫Ω |∇𝔾𝑖𝑢|
2𝑑𝑥 ≥

(𝑁−2)2

𝑛
∫
Ω
∑𝑖<𝑗

|𝑢|2

𝑟𝑖𝑗
2 𝑑𝑥 +

(𝑁−2)2𝑛3

4
∫
Ω

|𝑢|2

|∑𝑛𝑗=1𝑥′𝑗|
2 𝑑𝑥. (3.27) 

 

Because the last term on right-hand side is positive, we get  

 

∑

𝑛

𝑖=1

∫
Ω

|∇𝔾𝑖𝑢|
2𝑑𝑥 ≥

(𝑁 − 2)2

𝑛
∫
Ω

∑

𝑖<𝑗

|𝑢|2

𝑟𝑖𝑗
2 𝑑𝑥. 

 

Also we have  

 

∑

𝑛

𝑖=1

|∇𝔾𝑖𝑢|
2 = (∇𝔾1𝑢)

2 +⋯+ (∇𝔾𝑛𝑢)
2 

= |(∇𝔾1𝑢,… , ∇𝔾𝑛𝑢)|
2 

= |∇𝔾𝑛𝑢|
2. 

 

The proof of Theorem 3.3.2 is complete.  

The following theorem deals with the total separation of 𝑛 ≥ 2 particles.   

T h e o r e m  3 . 3 . 4  Let 𝛺 ⊂ 𝔾𝑛 be an open set, where 𝔾 is a stratified group 

with 𝑁  being the dimension of the first stratum. Let 𝜌2: = ∑𝑖<𝑗 |(𝑥𝑖𝑥𝑗
−1)′|2 =

∑𝑖<𝑗 |𝑥𝑖′ − 𝑥𝑗′|
2 with 𝑥′𝑖 ≠ 𝑥′𝑗. Then we have  

 

 ∫
𝛺
|𝛻𝔾𝑢|

2𝑑𝑥 = 𝑛 (
(𝑛−1)

2
𝑁 − 1)

2

∫
𝛺

|𝑢|2

𝜌2
𝑑𝑥 + ∫

𝛺
|𝛻𝔾𝜌

−2𝛼𝑢|2𝜌4𝛼𝑑𝑥 (3.28) 

 

for all 𝑢 ∈ 𝐶0
∞(𝛺) with 𝛼 =

2−(𝑛−1)𝑁

4
.   

R e m a r k  3 . 3 . 5 .  The Euclidean case of inequality (3.28) was obtained by 

Douglas Lundholm [56].  
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P r o p o s i t i o n  3 . 3 . 6  Let 𝛺 ⊂ 𝔾𝑛 be an open set, where 𝔾 is a stratified 

group with 𝑁 being the dimension of the first stratum. Let 𝑓: 𝛺 → (0,∞) be twice 

differentiable. Then for any function 𝑢 ∈ 𝐶0
∞(𝛺) and 𝛼 ∈ ℝ, we have  

 

∫
𝛺
|𝛻𝔾𝑢|

2𝑑𝑥 = ∫
𝛺
(𝛼(1 − 𝛼)

|𝛻𝔾𝑓|
2

𝑓2
− 𝛼

ℒ𝑓

𝑓
) |𝑢|2𝑑𝑥 + ∫

𝛺
|𝛻𝔾𝑣|

2𝑓2𝛼𝑑𝑥, (3.29) 

 

where 𝑣:= 𝑓−𝛼𝑢. 

P r o o f  o f  P r o p o s i t i o n  3 . 3 . 6 .  Let us compute for 𝑢 = 𝑓𝛼𝑣, that  

 

 ∇𝔾𝑢 = 𝛼𝑓
𝛼−1(∇𝔾𝑓)𝑣 + 𝑓

𝛼∇𝔾𝑣. 
 

Then by squaring the above expression we have  

 

|∇𝔾𝑢|
2 = 𝛼2𝑓2(𝛼−1)|∇𝔾𝑓|

2|𝑣|2 + Re(2𝛼𝑣𝑓2𝛼−1(∇𝔾𝑓) ⋅ (∇𝔾𝑣)) + 𝑓
2𝛼|∇𝔾𝑣|

2 
 

 = 𝛼2𝑓2(𝛼−1)|∇𝔾𝑓|
2|𝑣|2 + 𝛼𝑓2𝛼−1(∇𝔾𝑓) ⋅ ∇𝔾|𝑣|

2 + 𝑓2𝛼|∇𝔾𝑣|
2. 

 

By integrating this expression over Ω, we have  

 

∫
Ω

|∇𝔾𝑢|
2𝑑𝑥 = ∫

Ω

𝛼2𝑓2(𝛼−1)|∇𝔾𝑓|
2|𝑣|2𝑑𝑥 

+∫
Ω

Re(𝛼𝑓2𝛼−1(∇𝔾𝑓) ⋅ ∇𝔾|𝑣|
2)𝑑𝑥 + ∫

Ω

𝑓2𝛼|∇𝔾𝑣|
2𝑑𝑥 

= ∫
Ω

𝛼2𝑓2(𝛼−1)|∇𝔾𝑓|
2|𝑣|2𝑑𝑥 

−𝛼∫
Ω

∇𝔾 ⋅ (𝑓
2𝛼−1∇𝔾𝑓)|𝑣|

2𝑑𝑥 + ∫
Ω

𝑓2𝛼|∇𝔾𝑣|
2𝑑𝑥. 

 

We have used the integration by parts to the middle term on the right-hand side. Then 

  

∇𝔾 ⋅ (𝑓
2𝛼−1∇𝔾𝑓) = (2𝛼 − 1)𝑓

2𝛼−2|∇𝔾𝑓|
2 + 𝑓2𝛼−1ℒ𝑓, 

 

and by using this fact we get  

 

∫
Ω

|∇𝔾𝑢|
2𝑑𝑥 = ∫

Ω

𝛼2𝑓2(𝛼−1)|∇𝔾𝑓|
2|𝑣|2𝑑𝑥 − ∫

Ω

𝛼𝑓2𝛼−1ℒ𝑓|𝑣|2𝑑𝑥 

−∫
Ω

𝛼(2𝛼 − 1)𝑓2𝛼−2|∇𝔾𝑓|
2|𝑣|2𝑑𝑥 + ∫

Ω

𝑓2𝛼|∇𝔾𝑣|
2𝑑𝑥. 

 

Putting back 𝑣 = 𝑓−𝛼𝑢 and collecting the terms we arrive at (3.29).  

P r o o f  o f  T h e o r e m  3 . 3 . 4 .  The following computation gives  
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∇𝔾𝑘𝜌
2 = (𝑋𝑘1𝜌

2, … , 𝑋𝑘𝑁𝜌
2) = 2∑

𝑛

𝑘≠𝑗

(𝑥𝑘𝑥𝑗
−1)′, 

 

where ∇𝔾𝑘= (𝑋𝑘1, … , 𝑋𝑘𝑁). Hence  

 

𝜌2 = 2∑𝑛𝑘=1 ∑
𝑛
𝑘≠𝑗 ∇𝔾𝑘 ⋅ (𝑥𝑘𝑥𝑗

−1)′ = 2𝑛(𝑛 − 1)𝑁, (3.30) 

 

  

|∇𝔾𝜌
2|2 = 8∑1≤𝑖<𝑗≤𝑛 |(𝑥𝑘𝑥𝑗

−1)
′|2

+ 8∑𝑛𝑘=1 ∑1≤𝑖<𝑗≤𝑛 (𝑥𝑘𝑥𝑖
−1)′ ⋅ (𝑥𝑘𝑥𝑗

−1)
′
=

4𝑛𝜌2,  (3.31) 

 

where in the last step we used the identity  

 

∑𝑛𝑘=1 ∑1≤𝑖<𝑗≤𝑛 (𝑥𝑘𝑥𝑖
−1)′ ⋅ (𝑥𝑘𝑥𝑗

−1)′ =
𝑛−2

2
∑1≤𝑖<𝑗≤𝑛 |(𝑥𝑖𝑥𝑗

−1)′|2. (3.32) 

 

By putting (3.30) and (3.31) in Proposition 3.3.6 with 𝑓 = 𝜌2 we have  

 

∫
Ω

|∇𝔾𝑢|
2𝑑𝑥 = 4𝑛𝛼 (

2 − (𝑛 − 1)𝑁

2
− 𝛼)∫

Ω

|𝑢|2

𝜌2
𝑑𝑥 + ∫

Ω

|∇𝔾𝜌
−2𝛼𝑢|2𝜌4𝛼𝑑𝑥. 

 

To optimise we differentiate the integral  

 

4𝑛𝛼 (
2 − (𝑛 − 1)𝑁

2
− 𝛼)∫

Ω

|𝑢|2

𝜌2
𝑑𝑥 

 

with respect to 𝛼, then we have  

 
2 − (𝑛 − 1)𝑁

2
− 2𝛼 = 0, 

 

and  

 

𝛼 =
2 − (𝑛 − 1)𝑁

4
, 

 

which completes the proof of Theorem 3.3.4.  

 

3.4  Horizontal Hardy type inequalities with exponential weights 

In this section, we get the horizontal Hardy inequality with exponential weights 

on 𝔾. 

T h e o r e m  3 . 4 . 1  Let 𝛺 ⊂ 𝔾 be an open set, where 𝔾 is a stratified group 

with 𝑁 ≥ 3 being the dimension of the first stratum. Let 𝑥0 ∈ 𝛺. Then we have 
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∫
𝛺
𝑒−

|(𝑥𝑥0
−1)′|2

4𝜆 (
(𝑁−2)2

4|𝑥′|2
−

𝑁

4𝛼
+
|(𝑥𝑥0

−1)′|2

16𝜆2
) |𝑢|2𝑑𝑥 ≤ ∫

𝛺
𝑒−

|(𝑥𝑥0
−1)′|2

4𝜆 |𝛻𝔾𝑢|
2𝑑𝑥 (3.33) 

 

for all 𝑢 ∈ 𝐶1(𝛺) and for each 𝜆 > 0.  

R e m a r k  3 . 4 . 2  Note that in the Euclidean case, this inequality is called two 

parabolic-type Hardy inequality, which was obtained by Zhang [57].  

P r o o f  o f  T h e o r e m  3 . 4 . 1 .  Let us recall the horizontal Hardy inequality for 

all 𝑣 ∈ 𝐶1(Ω),  

 

 
(𝑁−2)2

4
∫
Ω

|𝑣|2

|𝑥′|2
𝑑𝑥 ≤ ∫

Ω
|∇𝔾𝑣|

2𝑑𝑥. (3.34) 

 

Let 𝑣 = 𝑒−
|(𝑥𝑥0

−1)′|2

8𝜆 𝑢, then  

 

 ∇𝔾𝑣 = 𝑒
−
|(𝑥𝑥0

−1)′|2

8𝜆 ∇𝔾𝑢 −
(𝑥𝑥0

−1)′

4𝜆
𝑒−

|(𝑥𝑥0
−1)′|2

8𝜆 𝑢, 

 

for all 𝑣 ∈ 𝐶1(Ω). Then by inequality (3.34) we have  

 

 

(𝑁−2)2

4
∫
Ω
𝑒−

|(𝑥𝑥0
−1)′|2

4𝜆
|𝑢|2

|𝑥′|2
𝑑𝑥 ≤ ∫

Ω
𝑒−

|(𝑥𝑥0
−1)′|2

4𝜆 |∇𝔾𝑢|
2 +

|(𝑥𝑥0
−1)′|2

16𝜆2
𝑒−

|(𝑥𝑥0
−1)′|2

4𝜆 |𝑢|2𝑑𝑥  

−Re
1

2𝜆
∫
Ω
(𝑥𝑥0

−1)′ ⋅ (∇𝔾𝑢)𝑢𝑒
−
|(𝑥𝑥0

−1)′|2

4𝜆 𝑑𝑥.  (3.35) 

 

 

By the integration by parts in the last term of right-hand side of the inequality we 

have  

 

Re∫
Ω
(𝑥𝑥0

−1)′ ⋅ (∇𝔾𝑢)𝑢𝑒
−
|(𝑥𝑥0

−1)′|2

4𝜆 𝑑𝑥 = −
1

2
∫
Ω
(𝑁 −

|(𝑥𝑥0
−1)′|2

2𝜆
) 𝑒−

|(𝑥𝑥0
−1)′|2

4𝜆 |𝑢|2𝑑𝑥.   (3.36) 

 

 

By putting equality (3.36) in (3.35) and rearranging it, we prove Theorem 3.4. 1. 

 

3.5  Horizontal Hardy-Rellich type inequalities and embedding results 

T h e o r e m  3 . 5 . 1  Let 𝔾 be a homogeneous stratified group with 𝑁 being 

the dimension of the first stratum, and let 𝛼, 𝛽 ∈ ℝ. Then for any 𝑓 ∈ 𝐶0
∞(𝔾\{𝑥′ =

0}) we have  
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 (
𝑁−(𝛼+𝛽+3)

2
∫
𝔾

|𝛻𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 + (𝛼 + 𝛽 + 1)∫

𝔾

(𝑥′⋅𝛻𝐻𝑓)
2

|𝑥′|𝛼+𝛽+3
𝑑𝑥)

2

 

 ≤ ∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥 ∫

𝔾

|𝛻𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥, (3.37) 

 

where | ⋅ | is the Euclidean norm on ℝ𝑁. Moreover, for 𝛼 + 𝛽 + 3 ≤ 𝑁 we have  

 

 
|𝑁+𝛼+𝛽−1|

2
∫
𝔾

|𝛻𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 ≤ (∫

𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥)

1

2
(∫
𝔾

|𝛻𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥)

1

2
, (3.38) 

 

with the sharp constant.  

Let us define the following Sovolev type spaces on the stratified Lie group 𝔾: 

- Let 𝐷𝛾
1,2(𝔾) be the completion of 𝐶0

∞(𝔾\{𝑥′ = 0}) with respect to the 

norm  

 ‖𝑓‖𝐷𝛾
1,2(𝔾) = (∫𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛾
𝑑𝑥)

1

2
. 

 

- Let 𝐷𝛾
2,2(𝔾) be the completion of 𝐶0

∞(𝔾\{𝑥′ = 0}) with respect to the 

norm  

 ‖𝑓‖𝐷𝛾
2,2(𝔾) = (∫𝔾

|ℒ𝑓|2

|𝑥′|2𝛾
𝑑𝑥)

1

2
. 

 

- Let 𝐻𝛼,𝛽
2 (𝔾) be the completion of 𝐶0

∞(𝔾\{𝑥′ = 0}) with respect to the 

norm  

 ‖𝑓‖𝐻𝛼,𝛽
2 (𝔾) = (∫𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
+

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥)

1

2
. 

 

T h e o r e m  3 . 5 . 2  Let 𝔾 be a homogeneous stratified group with 𝑁 being 

the dimension of the first stratum, and let 𝛼, 𝛽 ∈ ℝ . We have the following 

continuous embedding   

    

 𝐻𝛼,𝛽
2 (𝔾) ⊂ 𝐷𝛼+𝛽+1

2

2,2 (𝔾), 

 

for 𝛼 + 𝛽 − 1 ≠ 𝑁.  

     

 𝐷𝛼
2,2(𝔾) ⊂ 𝐷𝛼+1

1,2 (𝔾), 
 

for 𝛼 ≤
𝑁

2
− 2 with 𝛼 ≠

𝑁

2
.  

In the abelian case 𝔾 = (ℝ𝑛, +), we have 𝑁 = 𝑛, ∇𝐻= ∇= (𝜕𝑥1 , … , 𝜕𝑥𝑛), so 

(3.37) implies the Hardy-Rellich type inequality (see e.g. [58] and [59]) for 𝔾 ≡ ℝ𝑛:  
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 (
𝑛−(𝛼+𝛽+3)

2
∫
ℝ𝑛

|∇𝑓|2

∥𝑥∥𝛼+𝛽+1
𝑑𝑥 + (𝛼 + 𝛽 + 1) ∫

ℝ𝑛
(𝑥⋅∇𝑓)2

∥𝑥∥𝛼+𝛽+3
𝑑𝑥)

2

 

 ≤ ∫
ℝ𝑛

|Δ𝑓|2

∥𝑥∥2𝛽
𝑑𝑥 ∫

ℝ𝑛
|∇𝑓|2

∥𝑥∥2𝛼
𝑑𝑥, (3.39) 

 

for all 𝑓 ∈ 𝐶0
∞(ℝ𝑛\{0}), and ∥ 𝑥 ∥= √𝑥1

2 +⋯+ 𝑥𝑛
2. 

When 𝛼 = 1 and 𝛽 = 0, the inequality (3.38) gives the following stratified 

group version of Rellich's inequality  

 

 ∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2
𝑑𝑥 ≤ (

2

𝑁
)
2

∫
𝔾
|ℒ𝑓|2𝑑𝑥,    4 ≤ 𝑁, (3.40) 

 

with (
2

𝑁
)
2
 being the best constant. 

Directly from the inequality (3.38), choosing 𝛼  and 𝛽 , we can obtain a 

number of Heisenberg-Pauli-Weyl type uncertainly inequalities which have various 

consequences and applications. For instance,   

 

 
|𝑁+2𝛼|

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2(𝛼+1)
𝑑𝑥 ≤ (∫

𝔾

|ℒ𝑓|2

|𝑥′|2(𝛼+1)
𝑑𝑥)

1

2
(∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥)

1

2
 

 

for 𝛼 ≤
𝑁

2
− 2 and any 𝑓 ∈ 𝐻𝛼,𝛼+1

2 (𝔾).  

 

 
|𝑁−2|

2
∫
𝔾
|∇𝐻𝑓|

2𝑑𝑥 ≤ (∫
𝔾
|𝑥′|2(𝛼+1)|∇𝐻𝑓|

2𝑑𝑥)
1

2 (∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛼
𝑑𝑥)

1

2
 

 

for 3 ≤ 𝑁 and any 𝑓 ∈ 𝐷0
1,2(𝔾). 

 

 
𝑁

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2
𝑑𝑥 ≤ (∫

𝔾
|∇𝐻𝑓|

2𝑑𝑥)
1

2 (∫
𝔾

|ℒ𝑓|2

|𝑥′|2
𝑑𝑥)

1

2
 

 

for any 𝑓 ∈ 𝐷1
1,2(𝔾). 

 

 
𝑁−1

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|
𝑑𝑥 ≤ (∫

𝔾
|𝑥′|2|∇𝐻𝑓|

2𝑑𝑥)
1

2 (∫
𝔾

|ℒ𝑓|2

|𝑥′|2
𝑑𝑥)

1

2
 

 

for 2 ≤ 𝑁 and any 𝑓 ∈ 𝐷1/2
1,2 (𝔾).  

 

 
𝑁−1

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|
𝑑𝑥 ≤ (∫

𝔾
|∇𝐻𝑓|

2𝑑𝑥)
1

2(∫
𝔾
|ℒ𝑓|2𝑑𝑥)

1

2 

 

for 2 ≤ 𝑁 and any 𝑓 ∈ 𝐷1/2
1,2 (𝔾).  
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P r o o f  o f  T h e o r e m  3 . 5 . 1 .  For all 𝑠 ∈ ℝ𝑛 we have  

 

 ∫
𝔾
|
∇𝐻𝑓

|𝑥′|𝛼
+ 𝑠

𝑥′

|𝑥′|𝛽+1
ℒ𝑓|

2
𝑑𝑥 ≥ 0, 

 

that is,  

 

 ∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥 + 2𝑠 ∫

𝔾

𝑥′⋅∇𝐻𝑓

|𝑥′|𝛼+𝛽+1
ℒ𝑓𝑑𝑥 + 𝑠2 ∫

𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥 ≥ 0. (3.41) 

 

Since  

 

 ∫
𝔾

𝑥′⋅∇𝐻𝑓

|𝑥′|𝛼+𝛽+1
ℒ𝑓𝑑𝑥 = ∫

𝔾
d𝑖𝑣𝐻(∇𝐻𝑓) (

𝑥′⋅∇𝐻𝑓

|𝑥′|𝛼+𝛽+1
)𝑑𝑥 

 

by using the divergence theorem we obtain  

 

∫
𝔾

d𝑖𝑣𝐻(∇𝐻𝑓)(
𝑥′ ⋅ ∇𝐻𝑓

|𝑥′|𝛼+𝛽+1
)𝑑𝑥 = −

1

2
∫
𝔾

𝑥′

|𝑥′|𝛼+𝛽+1
⋅ ∇𝐻(|∇𝐻𝑓|

2)𝑑𝑥 

−∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 + (𝛼 + 𝛽 + 1)∫

𝔾

(𝑥′ ⋅ ∇𝐻𝑓)
2

|𝑥′|𝛼+𝛽+3
𝑑𝑥. 

 

Again by the divergence theorem we get  

 

−
1

2
∫
𝔾

𝑥′

|𝑥′|𝛼+𝛽+1
⋅ ∇𝐻(|∇𝐻𝑓|

2)𝑑𝑥 =
𝑁 − (𝛼 + 𝛽 + 1)

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥. 

 

Thus,  

 

 ∫
𝔾

𝑥′⋅∇𝐻𝑓

|𝑥′|𝛼+𝛽+1
ℒ𝑓𝑑𝑥 =

𝑁−(𝛼+𝛽+3)

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 + (𝛼 + 𝛽 +

1)∫
𝔾

(𝑥′⋅∇𝐻𝑓)
2

|𝑥′|𝛼+𝛽+3
𝑑𝑥. (3.42) 

 

Therefore, the equation (3.41) can be restated as 

 

 𝑠2 ∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥 + 2𝑠(

𝑁−(𝛼+𝛽+3)

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 

 +(𝛼 + 𝛽 + 1) ∫
𝔾

(𝑥′⋅∇𝐻𝑓)
2

|𝑥′|𝛼+𝛽+3
𝑑𝑥) + ∫

𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥 ≥ 0. (3.43) 

 

Denoting 

 

 𝑎:= ∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥, 
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 𝑏:=
𝑁−(𝛼+𝛽+3)

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 + (𝛼 + 𝛽 + 1)∫

𝔾

(𝑥′⋅∇𝐻𝑓)
2

|𝑥′|𝛼+𝛽+3
𝑑𝑥, 

 

and  

 𝑐: = ∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥, 

 

we arrive at  

 

 𝑎𝑠2 + 2𝑏𝑠 + 𝑐 ≥ 0, (3.44) 

 

which is equivalent to 𝑏2 − 𝑎𝑐 ≤ 0. Thus, we have  

 

 (
𝑁−(𝛼+𝛽+3)

2
∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|𝛼+𝛽+1
𝑑𝑥 + (𝛼 + 𝛽 + 1)∫

𝔾

(𝑥′⋅∇𝐻𝑓)
2

|𝑥′|𝛼+𝛽+3
𝑑𝑥)

2

 

 ≤ ∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥 ∫

𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥. (3.45) 

 

This shows the inequality (3.37). Now it remains to prove (3.38). It can be proved 

similarly. We refer [61] for a different proof of (3.38) . 

P r o o f  o f  T h e o r e m  3 . 5 . 2 .  Since 𝑁 ≠ 𝛼 + 𝛽 − 1, from (3.38) we obtain  

 

∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2
(𝛼+𝛽+1)

2

𝑑𝑥 ≤
2

|𝑁 + 𝛼 + 𝛽 − 1|
(∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥)

1
2

(∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥)

1
2

 

≤
2

|𝑁 + 𝛼 + 𝛽 − 1|
(∫
𝔾

|ℒ𝑓|2

|𝑥′|2𝛽
𝑑𝑥 + ∫

𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛼
𝑑𝑥), 

 

for all 𝑓 ∈ 𝐶0
∞(𝔾\{𝑥′ = 0}). This proves Part (i). Part (ii) also implies from the 

inequality (3.38), namely assuming 𝛼 + 𝛽 + 3 ≤ 𝑁 and letting 𝛽 = 𝛼 + 1, 𝛼 ≠
𝑁

2
.  

C o r o l l a r y  3 . 5 . 3  Let 𝔾 be a homogeneous stratified group N being the 

dimension of the first stratum, and let 𝛼, 𝛽 ∈ ℝ. Then 𝑓 ∈ 𝐶0
∞(𝔾\{𝑥′ = 0}), we 

have 

  

 
|𝑁−𝛾|

2
‖

𝑓

|𝑥′|
𝛾
2

‖
𝐿2(𝔾)

2

≤ ‖
𝛻𝐻𝑓

|𝑥′|𝛼
‖
𝐿2(𝔾)

‖
𝑓

|𝑥′|𝛽
‖
𝐿2(𝔾)

 (3.47) 

 

where 𝛾 = 𝛼 + 𝛽 + 1 and then the constant 
|𝑁−𝛾|

2
 is sharp.   

P r o o f  o f  C o r o l l a r y  3 . 5 . 3 .  Given 𝑓 ∈ 𝐶0
∞(𝔾\𝑥′ = 0) arbitrary and 

𝛼, 𝛽 ∈ ℝ, we have  

 

 ∫
𝔾
|
∇𝐻𝑓

|𝑥′|𝛽
+ 𝑠

𝑥′

|𝑥′|𝛼+1
𝑓|
2
𝑑𝑥 ⩾ 0, (3.48) 
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for every 𝑠 ∈ ℝ.  

 

 ∫
𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛽
𝑑𝑥 + 𝑠2 ∫

𝔾

|𝑓|2

|𝑥′|2𝛼
𝑑𝑥 + 2𝑠 ∫

𝔾
𝑓
𝑥′⋅∇𝐻𝑓

|𝑥′|𝛾
𝑑𝑥 ⩾ 0 (3.49) 

 

by using divergence theorem  

 

 ∫
𝔾
𝑓
𝑥′⋅∇𝐻𝑓

|𝑥′|𝛾
𝑑𝑥 = −

𝑁−𝛾

2
∫
𝔾

|𝑓|2

|𝑥′|𝛾
𝑑𝑥, 

 

 𝑎 = ∫
𝔾

|𝑓|2

|𝑥′|2𝛼
𝑑𝑥,    𝑏 = [𝑁 − 𝛾] ∫

𝔾

|𝑓|2

|𝑥′|𝛾
, 𝑐 = ∫

𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛽
𝑑𝑥, 

  

 𝑎𝑠2 − 𝑏𝑠 + 𝑐 ⩾ 0, 
 

This is equivalent to 𝑏2 − 4𝑎𝑐 ⩽ 0  

 

 [𝑁 − 𝛾]2 (∫
𝔾

|𝑓|2

|𝑥′|𝛾
)
2

⩽ 4(∫
𝔾

|𝑓|2

|𝑥′|2𝛼
𝑑𝑥) (∫

𝔾

|∇𝐻𝑓|
2

|𝑥′|2𝛽
𝑑𝑥). (3.50) 

 

R e m a r k  3 . 5 . 4  Let us denote by 𝐻𝛼,𝛽
1 (𝔾) the completion of 𝐶0

∞(𝔾\{𝑥′ =

0}) with respect to the weighted Sobolev type norm  

 

 ‖𝑓‖𝐻𝛼,𝛽
1 : = (∫

𝔾
[
|𝑓|2

|𝑥′|2𝛼
+
|∇𝐻𝑓|

2

|𝑥′|2𝛽
] 𝑑𝑥)

1/2

, (3.51) 

 

and by 𝐿𝛼
2 (𝔾) the completion of 𝐶0

∞(𝔾\{𝑥′ = 0}) with respect to the weighted 

Lebesgue norm  

 

 ‖𝑓‖𝐿𝛼2 : = (∫𝔾
|𝑓|2

|𝑥′|2𝛼
𝑑𝑥)

1/2

. (3.52) 

 

Then the inequality (3.46) implies that, for 𝛾 ≠ 𝑁, we have the continuous 

embedding  

 𝐻𝛼,𝛽
1 (𝔾) ⊂ 𝐿𝛾/2

2 (𝔾). (3.53) 

 

Moreover, since the right-hand side above is symmetric with respect to the 

parameters 𝛼, 𝛽 we also have the continuous embedding  

 

 𝐻𝛽,𝛼
1 (𝔾) ⊂ 𝐿𝛾/2

2 (𝔾). (3.54) 

 

C o r o l l a r y  3 . 5 . 5  The inequalities below hold true with sharp constants:   

 For any 𝑓 ∈ 𝐷1,2(𝔾) and 𝛼 = 1, 𝛽 = 0 it follows that  
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 (
𝑁−2

2
)
2

∫
𝔾

|𝑓|2

|𝑥′|2
𝑑𝑥 ≤ ∫

𝔾
|𝛻𝑓|2𝑑𝑥. (3.55) 

  

 For any 𝑓 ∈ 𝐻𝛽+1,𝛽
1 (𝔾) and 𝛼 = 𝛽 + 1 it follows that 

  

 (
𝑁−2(𝛽+1)

2
)
2

∫
𝔾

|𝑓|2

|𝑥′|2(𝛽+1)
𝑑𝑥 ≤ ∫

𝔾

|𝛻𝑓|2

|𝑥′|2𝛽
𝑑𝑥. (3.56) 

  

 For any 𝑓 ∈ 𝐻𝛼,𝛼+1
1 (𝔾) and 𝛽 = 𝛼 + 1 it follows that  

 

 (
𝑁−2(𝛼+1)

2
)
2

∫
𝔾

|𝑓|2

|𝑥′|2(𝛼+1)
𝑑𝑥 ≤ (∫

𝔾

|𝑓|2

|𝑥′|2𝛼
𝑑𝑥)

1/2

(∫
𝔾

|𝛻𝑓|2

|𝑥′|2(𝛼+1)
𝑑𝑥)

1/2

. (3.57) 

  

 For any 𝑓 ∈ 𝐻−(𝛽+1),𝛽
1 (𝔾) and 𝛼 = −(𝛽 + 1), then 𝑓 ∈ 𝐿2(𝔾) and  

 

 (
𝑁

2
) ∫

𝔾
|𝑢|2𝑑𝑥 ≤ (∫

𝔾
|𝑥′|2(𝛽+1)|𝑓|2𝑑𝑥)

1/2
(∫
𝔾

|𝛻𝑓|2

|𝑥′|2𝛽
𝑑𝑥)

1/2

. (3.58) 

  

 For any 𝑓 ∈ 𝐻0,1
1 (𝔾) and 𝛼 = 0, 𝛽 = 1, then 𝑓 ∈ 𝐿1

2(𝔾) and  

 

 |
𝑁−2

2
| ∫
𝔾

|𝑢|2

|𝑥′|2
𝑑𝑥 ≤ (∫

𝔾
|𝑓|2𝑑𝑥)

1/2
(∫
𝔾

|𝛻𝑓|2

|𝑥′|2
𝑑𝑥)

1/2

. (3.59) 

  

 For any 𝑓 ∈ 𝐻−1,1
1 (𝔾), 𝑁 > 1 and 𝛼 = −1, 𝛽 = 1, then 𝑓 ∈ 𝐿1/2

2 (𝔾) 

and  

 

 (
𝑁−1

2
) ∫

𝔾

|𝑢|2

|𝑥′|2
𝑑𝑥 ≤ (∫

𝔾
|𝑥′|2|𝑓|2𝑑𝑥)

1/2
(∫
𝔾

|𝛻𝑓|2

|𝑥′|2
𝑑𝑥)

1/2

. (3.60) 

  

 For any 𝑓 ∈ 𝐻1(𝔾) = 𝐻0,0
1 (𝔾), 𝑁 > 1 and 𝛼 = 0, 𝛽 = 0, then 𝑓 ∈

𝐿1/2
2 (𝔾) and  

 

 (
𝑁−1

2
) ∫

𝔾

|𝑢|2

|𝑥′|2
𝑑𝑥 ≤ (∫

𝔾
|𝑓|2𝑑𝑥)

1/2
(∫
𝔾
|𝛻𝑓|2𝑑𝑥)

1/2
. (3.61) 
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4  HARDY TYPE INEQUALITIES AND SUB-LAPLACIAN 

FUNDAMENTAL SOLUTIONS 

 

This chapter is devoted to present the Hardy and Rellich type inequalities on 

stratified groups with the ℒ-gauge weights. We recall that ℒ-gauge 𝑑(𝑥) is a 

homogeneous quasi-norm arising from the fundamental solution of the sub-Laplacian 

ℒ such as  

 

 𝑑(𝑥):= {휀(𝑥)
1

2−𝑄, for  𝑥 ≠ 0,
0, for  𝑥 ≠ 0.

 

 

𝑑(𝑥)2−𝑄  is a constant multiple of Folland's fundamental solution of the 

sub-Laplacian ℒ, with 𝑄 being the homogeneous dimension of the stratified group 

𝔾. 

 

4.1  Weighted 𝑳𝒑-Hardy type inequalities with boundary terms 

The main aim of this section is to give the generalised weighted 𝐿𝑝-Hardy 

type inequalities on stratified groups. We present a weighted 

𝐿𝑝-Caffarelli-Kohn-Nirenberg type inequality with boundary term on the stratified 

group 𝔾, which implies, in particular, the weighted 𝐿𝑝-Hardy type inequality. As 

consequences of those inequalities, we recover most of the known Hardy type 

inequalities and Heisenberg-Pauli-Weyl type uncertainty principles on the stratified 

group 𝔾 [62]. 

Usually, unless we state explicitly otherwise, the functions 𝑢 entering all the 

inequalities are complex-valued. 

 

4.1.1  Weighted 𝑳𝒑-Caffarelli-Kohn-Nirenberg type inequality 

We first present the following weighted 𝐿𝑝-Caffarelli-Kohn-Nirenberg type 

inequalities with boundary terms on the stratified Lie group 𝔾 and then discuss their 

consequences. The proof of Theorem 4.1.1 is analogous to the proof of Davies and 

Hinz [8] but is now carried out in the case of the stratified Lie group 𝔾. The 

boundary terms also give new addition to the Euclidean results. The classical 

Caffarelli-Kohn-Nirenberg inequalities in the Euclidean setting were obtained in [63]. 

Let 𝔾 be a stratified group with 𝑁 being the dimension of the first stratum, 

and let 𝑉 be a real-valued function in 𝐿𝑙𝑜𝑐
1 (Ω) with partial derivatives of order up 

to 2 in 𝐿𝑙𝑜𝑐
1 (Ω), and such that ℒ𝑉 is of one sign. Then we have: 

T h e o r e m  4 . 1 . 1  Let 𝛺 be an admissible domain in the stratified group 𝔾 

and let 𝑉 be a real-valued function such that ℒ𝑉 < 0 holds a.e. in 𝛺. Then for any 

complex-valued 𝑢 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺), and all 1 < 𝑝 < ∞, we have the inequality 

 

‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

𝑝

≤ 𝑝‖
|𝛻𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|𝛻𝔾𝑢|‖

𝐿𝑝(𝛺)

‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

𝑝−1

− ∫
𝜕𝛺
|𝑢|𝑝〈�̃�𝑉, 𝑑𝑥〉. (4.1) 
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Note that if u vanishes on the boundary ∂Ω, then (4.1) extends the Davies and Hinz 

result to the weighted Lp-Hardy type inequality on stratified groups:  

 

 ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

≤ 𝑝‖
|𝛻𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|𝛻𝔾𝑢|‖

𝐿𝑝(𝛺)

,    1 < 𝑝 < ∞. (4.2) 

 

P r o o f  o f  T h e o r e m  4 . 1 . 1 .  Let 𝜐𝜖: = (|𝑢|
2 + 𝜖2)

1

2 − 𝜖 . Then 𝜐𝜖
𝑝
∈

𝐶2(Ω) ∩ 𝐶1(Ω) and using Green's first formula and the fact that ℒ𝑉 < 0 we get  

 

∫
Ω

|ℒ𝑉|𝜐𝜖
𝑝
𝑑𝑥 = −∫

Ω

ℒ𝑉𝜐𝜖
𝑝
𝑑𝑥 

= ∫
Ω

(∇̃𝑉)𝜐𝜖
𝑝
𝑑𝑥 − ∫

𝜕Ω

𝜐𝜖
𝑝
〈∇̃𝑉, 𝑑𝑥〉 

= ∫
Ω

∇𝔾𝑉 ⋅ ∇𝔾𝜐𝜖
𝑝
𝑑𝑥 − ∫

𝜕Ω

𝜐𝜖
𝑝
〈∇̃𝑉, 𝑑𝑥〉 

≤ ∫
Ω

|∇𝔾𝑉||∇𝔾𝜐𝜖
𝑝
|𝑑𝑥 − ∫

𝜕Ω

𝜐𝜖
𝑝
〈∇̃𝑉, 𝑑𝑥〉 

= 𝑝∫
Ω

(
|∇𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

) |ℒ𝑉|
𝑝−1
𝑝 𝜐𝜖

𝑝−1
|∇𝔾𝜐𝜖|𝑑𝑥 − ∫

𝜕Ω

𝜐𝜖
𝑝
〈∇̃𝑉, 𝑑𝑥〉, 

 

where (∇̃𝑢)𝑣 = ∇𝔾𝑢 ⋅ ∇𝔾𝑣. We have  

 

 ∇𝔾𝜐𝜖 = (|𝑢|
2 + 𝜖2)−

1

2|𝑢|∇𝔾|𝑢|, 
 

since 0 ≤ 𝜐𝜖 ≤ |𝑢|. Thus,  

 

 𝜐𝜖
𝑝−1
|∇𝔾𝜐𝜖| ≤ |𝑢|

𝑝−1|∇𝔾|𝑢||. 
 

On the other hand, let 𝑢(𝑥) = 𝑅(𝑥) + 𝑖𝐼(𝑥), where 𝑅(𝑥) and 𝐼(𝑥) denote the real 

and imaginary parts of 𝑢. We can restrict to the set where 𝑢 ≠ 0. Then we have  

 

 (∇𝔾|𝑢|)(𝑥) =
1

|𝑢|
(𝑅(𝑥)∇𝔾𝑅(𝑥) + 𝐼(𝑥)∇𝔾𝐼(𝑥))    if    𝑢 ≠ 0. (4.3) 

 

Since  

 

 |
1

|𝑢|
(𝑅∇𝔾𝑅 + 𝐼∇𝔾𝐼)|

2
≤ |∇𝔾𝑅|

2 + |∇𝔾𝐼|
2, (4.4) 

 

we get that |∇𝔾|𝑢|| ≤ |∇𝔾𝑢| a.e. in Ω. Therefore,  
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∫
Ω

|ℒ𝑉|𝜐𝜖
𝑝
𝑑𝑥 ≤ 𝑝∫

Ω

(
|∇𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|∇𝔾𝑢|) |ℒ𝑉|
𝑝−1
𝑝 |𝑢|𝑝−1𝑑𝑥 − ∫

𝜕Ω

𝜐𝜖
𝑝
〈∇̃𝑉, 𝑑𝑥〉 

≤ 𝑝(∫
Ω

(
|∇𝔾𝑉|

𝑝

|ℒ𝑉|(𝑝−1)
|∇𝔾𝑢|

𝑝) 𝑑𝑥)

1
𝑝

(∫
Ω

|ℒ𝑉||𝑢|𝑝𝑑𝑥)

𝑝−1
𝑝

−∫
𝜕Ω

𝜐𝜖
𝑝
〈∇̃𝑉, 𝑑𝑥〉, 

 

where we have used Hölder's inequality in the last line. Thus, when 𝜖 → 0, we obtain 

(4.1).  

Here we have the horizontal 𝑳𝒑-Caffarelli–Kohn–Nirenberg inequality with 

the boundary term: 

C o r o l l a r y  4 . 1 . 2  Let 𝛺 be an admissible domain in a stratified group 𝔾 

with 𝑁 ≥ 3 being the dimension of the first stratum, and let 𝛼, 𝛽 ∈ ℝ. Then for all 

𝑢 ∈ 𝐶2(𝛺\{𝑥′ = 0}) ∩ 𝐶1(𝛺\{𝑥′ = 0}), and any 1 < 𝑝 < ∞, we have 

  

|𝑁−𝛾|

𝑝
‖

𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(𝛺)

𝑝

≤ ‖
𝛻𝔾𝑢

|𝑥′|𝛼
‖
𝐿𝑝(𝛺)

‖
𝑢

|𝑥′|
𝛽
𝑝−1

‖

𝐿𝑝(𝛺)

𝑝−1

−
1

𝑝
∫
𝜕𝛺
|𝑢|𝑝〈�̃�|𝑥′|2−𝛾, 𝑑𝑥〉, (4.5) 

 

for 2 < 𝛾 < 𝑁 with 𝛾 = 𝛼 + 𝛽 + 1, and where | ⋅ | is the Euclidean norm on ℝ𝑁. 

In particular, if 𝑢 vanishes on the boundary 𝜕𝛺, we have  

 

 
|𝑁−𝛾|

𝑝
‖

𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(𝛺)

𝑝

≤ ‖
𝛻𝔾𝑢

|𝑥′|𝛼
‖
𝐿𝑝(𝛺)

‖
𝑢

|𝑥′|
𝛽
𝑝−1

‖

𝐿𝑝(𝛺)

𝑝−1

. (4.6) 

   

P r o o f  o f  C o r o l l a r y  4 . 1 . 2 .  To obtain (4.5) from (4.1) , we take 𝑉 =
|𝑥′|2−𝛾. Then  

 

 |∇𝔾𝑉| = |2 − 𝛾||𝑥′|
1−𝛾,        |ℒ𝑉| = |(2 − 𝛾)(𝑁 − 𝛾)||𝑥′|−𝛾 , 

 

and observe that ℒ𝑉 = (2 − 𝛾)(𝑁 − 𝛾)|𝑥′|−𝛾 < 0. To use (4.1) we calculate  

 

 ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

𝑝

= |(2 − 𝛾)(𝑁 − 𝛾)| ‖
𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(Ω)

𝑝

, 

  

 ‖
|∇𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

∇𝔾𝑢‖

𝐿𝑝(Ω)

=
|2−𝛾|

|(2−𝛾)(𝑁−𝛾)|
𝑝−1
𝑝

‖
|∇𝔾𝑢|

|𝑥′|
𝛾−𝑝
𝑝

‖
𝐿𝑝(Ω)

, 

  

 ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

𝑝−1

= |(2 − 𝛾)(𝑁 − 𝛾)|
𝑝−1

𝑝 ‖
𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(Ω)

𝑝−1

. 
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Thus, (4.1) implies  

 

|𝑁−𝛾|

𝑝
‖

𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(Ω)

𝑝

≤ ‖
∇𝔾𝑢

|𝑥′|
𝛾−𝑝
𝑝

‖
𝐿𝑝(Ω)

‖
𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(Ω)

𝑝−1

−
1

𝑝
∫
𝜕Ω
|𝑢|𝑝〈∇̃|𝑥′|2−𝛾 , 𝑑𝑥〉. 

 

If we denote 𝛼 =
𝛾−𝑝

𝑝
 and 

𝛽

𝑝−1
=
𝛾

𝑝
, we get (4.5).  

 

4.1.2 Badiale-Tarantello conjecture 

Theorem 4.1.1 also gives a new proof of the generalised Badiale-Tarantello 

conjecture [64] on the optimal constant in Hardy inequalities in ℝ𝑛 with weights 

taken with respect to a subspace. 

 P r o p o s i t i o n  4 . 1 . 4  Let 𝑥 = (𝑥′, 𝑥′′) ∈ ℝ𝑁 × ℝ𝑛−𝑁 , 1 ≤ 𝑁 ≤ 𝑛 , 2 <
𝛾 < 𝑁 and 𝛼, 𝛽 ∈ ℝ. Then for any 𝑢 ∈ 𝐶0

∞(ℝ𝑛\{𝑥′ = 0}) and all 1 < 𝑝 < ∞, we 

have  

 
|𝑁−𝛾|

𝑝
‖

𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(ℝ𝑛)

𝑝

≤ ‖
𝛻𝑢

|𝑥′|𝛼
‖
𝐿𝑝(ℝ𝑛)

‖
𝑢

|𝑥′|
𝛽
𝑝−1

‖

𝐿𝑝(ℝ𝑛)

𝑝−1

, (4.7) 

 

where 𝛾 = 𝛼 + 𝛽 + 1  and |𝑥′|  is the Euclidean norm ℝ𝑁 . If 𝛾 ≠ 𝑁  then the 

constant 
|𝑁−𝛾|

𝑝
 is sharp.   

The proof of Proposition 4.1.3 is similar to Corollary 4.1.2, so we sketch it only very 

briefly.  

P r o o f  o f  P r o p o s i t i o n  4 . 1 . 4 .  Let us take 𝑉 = |𝑥′|2−𝛾. We observe that 

Δ𝑉 = (2 − 𝛾)(𝑁 − 𝛾)|𝑥′|−𝛾 < 0,  as well as |∇𝑉| = |2 − 𝛾||𝑥′|(1−𝛾)  and |Δ𝑉| =
|(2 − 𝛾)(𝑁 − 𝛾)||𝑥′|−𝛾. Then (4.1) with  

 

 ‖|Δ𝑉|
1

𝑝𝑢‖
𝐿𝑝(ℝ𝑛)

𝑝

= |(2 − 𝛾)(𝑁 − 𝛾)| ‖
𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(ℝ𝑛)

𝑝

, 

  

 ‖
|∇𝑉|

|Δ𝑉|
𝑝−1
𝑝

∇𝑢‖

𝐿𝑝(ℝ𝑛)

=
|2−𝛾|

|(2−𝛾)(𝑁−𝛾)|
𝑝−1
𝑝

‖
∇𝑢

|𝑥′|
𝛾−𝑝
𝑝

‖
𝐿𝑝(ℝ𝑛)

, 

  

 ‖|Δ𝑉|
1

𝑝𝑢‖
𝐿𝑝(ℝ𝑛)

𝑝−1

= |(2 − 𝛾)(𝑁 − 𝛾)|
𝑝−1

𝑝 ‖
𝑢

|𝑥′|
𝛾
𝑝

‖
𝐿𝑝(ℝ𝑛)

𝑝−1

, 

 

and denoting 𝛼 =
𝛾−𝑝

𝑝
 and 

𝛽

𝑝−1
=
𝛾

𝑝
, implies (4.7).  

 In particular, if we take 𝛽 = (𝛼 + 1)(𝑝 − 1) and 𝛾 = 𝑝(𝛼 + 1), then (4.7) 

implies  
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|𝑁−𝑝(𝛼+1)|

𝑝
‖

𝑢

|𝑥′|𝛼+1
‖
𝐿𝑝(ℝ𝑛)

≤ ‖
∇𝑢

|𝑥′|𝛼
‖
𝐿𝑝(ℝ𝑛)

, (4.8) 

 

where 1 < 𝑝 < ∞ , for all 𝑢 ∈ 𝐶0
∞(ℝ𝑛\{𝑥′ = 0}) , 𝛼 ∈ ℝ , with sharp constant. 

When 𝛼 = 0, 1 < 𝑝 < 𝑁 and 2 ≤ 𝑁 ≤ 𝑛, the inequality (4.8) implies that  

 

 ‖
𝑢

|𝑥′|
‖
𝐿𝑝(ℝ𝑛)

≤
𝑝

𝑁−𝑝
‖∇𝑢‖𝐿𝑝(ℝ𝑛), (4.9) 

 

which given another proof of the Badiale-Tarantello conjecture from Remark 2.3 

[64]. 

As another consequence of Theorem 4.1.1 we obtain the local Hardy type 

inequality with the boundary term, with 𝑑 being the ℒ-gauge.  

C o r o l l a r y  4 . 1 . 4 .  Let 𝛺 ⊂ 𝔾 with 0 ∉ 𝜕𝛺 be an admissible domain in a 

stratified group 𝔾  of homogeneous dimension 𝑄 ≥ 3.  Let 0 > 𝛼 > 2 − 𝑄 . Let 

𝑢 ∈ 𝐶1(𝛺\{0}) ∩ 𝐶(𝛺\{0}). Then we have  

 

 
|𝑄+𝛼−2|

𝑝
‖𝑑

𝛼−2

𝑝 |𝛻𝔾𝑑|
2

𝑝𝑢‖
𝐿𝑝(𝛺)

≤ ‖𝑑
𝑝+𝛼−2

𝑝 |𝛻𝔾𝑑|
2−𝑝

𝑝 |𝛻𝔾𝑢|‖
𝐿𝑝(𝛺)

 

 −
1

𝑝
‖𝑑

𝛼−2

𝑝 |𝛻𝔾𝑑|
2

𝑝𝑢‖
𝐿𝑝(𝛺)

1−𝑝

∫
𝜕𝛺
𝑑𝛼−1|𝑢|𝑝〈�̃�𝑑, 𝑑𝑥〉. (4.10) 

 

This extends the local Hardy type inequality that was obtained in [30, P. 518-520] for 

𝑝 = 2: 

  

 
|𝑄+𝛼−2|

2
‖𝑑

𝛼−2

2 |∇𝔾𝑑|𝑢‖
𝐿2(Ω)

≤ ‖𝑑
𝛼

2|∇𝔾𝑢|‖
𝐿2(Ω)

 

 −
1

2
‖𝑑

𝛼−2

2 |∇𝔾𝑑|𝑢‖
𝐿2(Ω)

−1

∫
𝜕Ω
𝑑𝛼−1|𝑢|2〈∇̃𝑑, 𝑑𝑥〉. (4.11) 

 

P r o o f  o f  C o r o l l a r y  4 . 1 . 4 .  First, we can multiply both sides of the 

inequality (4.1) by ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

1−𝑝

, so that we have  

 

 ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

≤ 𝑝‖
|∇𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|∇𝔾𝑢|‖

𝐿𝑝(Ω)

−

‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

1−𝑝

∫
𝜕Ω
|𝑢|𝑝〈∇̃𝑉, 𝑑𝑥〉. (4.12) 

 

Now, let us take 𝑉 = 𝑑𝛼. We have  
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 ℒ𝑑𝛼 = ∇𝔾(∇𝔾휀
𝛼

2−𝑄) = ∇𝔾 (
𝛼

2−𝑄
휀
𝛼+𝑄−2

2−𝑄 ∇𝔾휀) 

 =
𝛼(𝛼+𝑄−2)

(2−𝑄)2
휀
𝛼−4+2𝑄

2−𝑄 |∇𝔾휀|
2 +

𝛼

2−𝑄
휀
𝛼+𝑄−2

2−𝑄 ℒ휀. 

 

Since 휀 is the fundamental solution of ℒ, we have  

 

 ℒ𝑑𝛼 =
𝛼(𝛼+𝑄−2)

(2−𝑄)2
휀
𝛼−4+2𝑄

2−𝑄 |∇𝔾휀|
2 = 𝛼(𝛼 + 𝑄 − 2)𝑑𝛼−2|∇𝔾𝑑|

2. 

 

We can observe that ℒ𝑑𝛼 < 0, and also the identities  

 

 ‖|ℒ𝑑𝛼|
1

𝑝𝑢‖
𝐿𝑝(Ω)

= 𝛼
1

𝑝|𝑄 + 𝛼 − 2|
1

𝑝 ‖𝑑
𝛼−2

𝑝 |∇𝔾𝑑|
2

𝑝𝑢‖
𝐿𝑝(Ω)

, 

  

‖
|∇𝔾𝑑

𝛼|

|ℒ𝑑𝛼|
𝑝−1
𝑝

|∇𝔾𝑢|‖

𝐿𝑝(Ω)

= 𝛼
1

𝑝|𝑄 + 𝛼 − 2|
1−𝑝

𝑝 ‖𝑑
𝛼−2+𝑝

𝑝 |∇𝔾𝑑|
2−𝑝

𝑝 |∇𝔾𝑢|‖
𝐿𝑝(Ω)

, 

  

‖|ℒ𝑑𝛼|
1
𝑝𝑢‖

𝐿𝑝(Ω)

1−𝑝

∫
𝜕Ω

|𝑢|𝑝〈∇̃𝑑𝛼 , 𝑑𝑥〉 = 𝛼
1
𝑝|𝑄 + 𝛼 − 2|

1−𝑝
𝑝 ‖𝑑

𝛼−2
𝑝 |∇𝔾𝑑|

2
𝑝𝑢‖

𝐿𝑝(Ω)

1−𝑝

 

×∫
𝜕Ω

𝑑𝛼−1|𝑢|𝑝〈∇̃𝑑, 𝑑𝑥〉. 

 

Using (4.12) we arrive at  

 

 
|𝑄+𝛼−2|

𝑝
‖𝑑

𝛼−2

𝑝 |∇𝔾𝑑|
2

𝑝𝑢‖
𝐿𝑝(Ω)

≤ ‖𝑑
𝑝+𝛼−2

𝑝 |∇𝔾𝑑|
2−𝑝

𝑝 |∇𝔾𝑢|‖
𝐿𝑝Ω

 

 −
1

𝑝
‖𝑑

𝛼−2

𝑝 |∇𝔾𝑑|
2

𝑝𝑢‖
𝐿𝑝(Ω)

1−𝑝

∫
𝜕Ω
𝑑𝛼−1|𝑢|𝑝〈∇̃𝑑, 𝑑𝑥〉, 

 

which implies (4.10).  

The inequality (4.12) implies the following Heisenberg-Pauli-Weyl type 

uncertainty principle on stratified groups.  

C o r o l l a r y  4 . 1 . 5  Let 𝛺 ⊂ 𝔾 be admissible domain in a stratified group 𝔾 

and let 𝑉 ∈ 𝐶2(𝛺)  be real-valued. Then for any complex-valued function 𝑢 ∈

𝐶2(𝛺) ∩ 𝐶1(𝛺) we have  

 

 ‖|ℒ𝑉|
−
1

𝑝𝑢‖
𝐿𝑝(𝛺)

‖
|𝛻𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|𝛻𝔾𝑢|‖

𝐿𝑝(𝛺)

 

 ≥
1

𝑝
‖𝑢‖𝐿𝑝(𝛺)

2 +
1

𝑝
‖|ℒ𝑉|

−
1

𝑝𝑢‖
𝐿𝑝(𝛺)

‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

1−𝑝

∫
𝜕𝛺
|𝑢|𝑝〈�̃�𝑉, 𝑑𝑥〉. (4.13) 
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In particular, if 𝑢 vanishes on the boundary 𝜕𝛺, then we have  

 

 ‖|ℒ𝑉|
−
1

𝑝𝑢‖
𝐿𝑝(𝛺)

‖
|𝛻𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|𝛻𝔾𝑢|‖

𝐿𝑝(𝛺)

≥
1

𝑝
‖𝑢‖𝐿𝑝(𝛺)

2 . (4.14) 

 

P r o o f  o f  C o r o l l a r y  4 . 1 . 5 .  By using the extended Hölder inequality and 

(4.12) we have  

 

 ‖|ℒ𝑉|
−
1

𝑝𝑢‖
𝐿𝑝(Ω)

‖
|∇𝔾𝑉|

|ℒ𝑉|
𝑝−1
𝑝

|∇𝔾𝑢|‖

𝐿𝑝(Ω)

 

≥
1

𝑝
‖|ℒ𝑉|

−
1
𝑝𝑢‖

𝐿𝑝(Ω)
‖|ℒ𝑉|

1
𝑝𝑢‖

𝐿𝑝(Ω)

+
1

𝑝
‖|ℒ𝑉|

−
1
𝑝𝑢‖

𝐿𝑝(Ω)
‖|ℒ𝑉|

1
𝑝𝑢‖

𝐿𝑝(Ω)

1−𝑝

∫
𝜕Ω

|𝑢|𝑝〈∇̃𝑉, 𝑑𝑥〉, 

 ≥
1

𝑝
‖|𝑢|2‖

𝐿
𝑝
2(Ω)

+
1

𝑝
‖|ℒ𝑉|

−
1

𝑝𝑢‖
𝐿𝑝(Ω)

‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

1−𝑝

∫
𝜕Ω
|𝑢|𝑝〈∇̃𝑉, 𝑑𝑥〉. 

 =
1

𝑝
‖𝑢‖𝐿𝑝(Ω)

2 +
1

𝑝
‖|ℒ𝑉|

−
1

𝑝𝑢‖
𝐿𝑝(Ω)

‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

1−𝑝

∫
𝜕Ω
|𝑢|𝑝〈∇̃𝑉, 𝑑𝑥〉, 

 

proving (4.13).  

By setting 𝑉 = |𝑥′|𝛼  in the inequality (4.14), we recover the 

Heisenberg-Pauli-Weyl type uncertainty principle on stratified groups as in [65] and 

[31]: 

 

(∫
Ω

|𝑥′|2−𝛼|𝑢|𝑝𝑑𝑥)(∫
Ω

|𝑥′|𝛼+𝑝−2|∇𝔾𝑢|
𝑝𝑑𝑥) ≥ (

𝑁 + 𝛼 − 2

𝑝
)
𝑝

(∫
Ω

|𝑢|𝑝𝑑𝑥)

2

. 

 

In the abelian case 𝔾 = (ℝ𝑛, +), taking 𝑁 = 𝑛 ≥ 3, for 𝛼 = 0 and 𝑝 = 2 

this implies the classical Heisenberg-Pauli-Weyl uncertainty principle for all 𝑢 ∈
𝐶0
∞(ℝ𝑛\{0}):  

 

(∫
ℝ𝑛
|𝑥|2|𝑢(𝑥)|2𝑑𝑥)(∫

ℝ𝑛
|∇𝑢(𝑥)|2𝑑𝑥) ≥ (

𝑛 − 2

2
)
2

(∫
ℝ𝑛
|𝑢(𝑥)|2𝑑𝑥)

2

. 

 

By setting 𝑉 = 𝑑𝛼 in the inequality (4.14), we obtain another uncertainty type 

principle:  
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(∫
Ω

|𝑢|𝑝

𝑑𝛼−2|∇𝔾𝑑|
2
𝑑𝑥)(∫

Ω

𝑑𝛼+𝑝−2|∇𝔾𝑑|
2−𝑝|∇𝔾𝑢|

𝑝𝑑𝑥)

≥ (
𝑄 + 𝛼 − 2

𝑝
)
𝑝

(∫
Ω

|𝑢|𝑝𝑑𝑥)

2

; 

 

taking 𝑝 = 2 and 𝛼 = 0 this yields  

 

(∫
Ω

𝑑2

|∇𝔾𝑑|
2
|𝑢|2𝑑𝑥)(∫

Ω

|∇𝔾𝑢|
2𝑑𝑥) ≥ (

𝑄 − 2

2
)
2

(∫
Ω

|𝑢|2𝑑𝑥)

2

. 

 

4.2  Weighted 𝑳𝒑-Rellich type inequalities 

In this section we establish weighted Rellich inequalities with boundary terms. 

We consider first the 𝐿2  and then the 𝐿𝑝  cases. The analogous 𝐿2 -Rellich 

inequality on ℝ𝑛 was proved by Schmincke [66] (and generalised by Bennett [67]). 

T h e o r e m  4 . 2 . 1  Let 𝛺 be an admissible domain in a stratified group 𝔾 

with 𝑁 ≥ 2 being the dimension of the first stratum. If a real-valued function 𝑉 ∈
𝐶2(𝛺) satisfies ℒ𝑉(𝑥) < 0 for all 𝑥 ∈ 𝛺, then for every 𝜖 > 0 we have  

 

 ‖
|𝑉|

|ℒ𝑉|
1
2

ℒ𝑢‖
𝐿2(𝛺)

2

≥ 2𝜖 ‖𝑉
1

2|𝛻𝔾𝑢|‖
𝐿2(𝛺)

2

+ 𝜖(1 − 𝜖)‖|ℒ𝑉|
1

2𝑢‖
𝐿2(𝛺)

2

 

 −𝜖 ∫
𝜕𝛺
(|𝑢|2〈�̃�𝑉, 𝑑𝑥〉 − 𝑉〈�̃�|𝑢|2, 𝑑𝑥〉), (4.15) 

 

for all complex-valued functions 𝑢 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺). In particular, if 𝑢 vanishes 

on the boundary 𝜕𝛺, we have  

 

 ‖
|𝑉|

|ℒ𝑉|
1
2

ℒ𝑢‖
𝐿2(𝛺)

2

≥ 2𝜖 ‖𝑉
1

2|𝛻𝔾𝑢|‖
𝐿2(𝛺)

2

+ 𝜖(1 − 𝜖)‖|ℒ𝑉|
1

2𝑢‖
𝐿2(𝛺)

2

. 

 

 P r o o f  o f  T h e o r e m  4 . 2 . 1 .  Using Green's second identity and that 

ℒ𝑉(𝑥) < 0 in Ω, we obtain  

 

∫
Ω

|ℒ𝑉||𝑢|2𝑑𝑥 = −∫
Ω

𝑉ℒ|𝑢|2𝑑𝑥 − ∫
𝜕Ω

(|𝑢|2〈∇̃𝑉, 𝑑𝑥〉 − 𝑉〈∇̃|𝑢|2, 𝑑𝑥〉) 

= −2∫
Ω

𝑉(R𝑒(𝑢ℒ𝑢) + |∇𝔾𝑢|
2)𝑑𝑥 − ∫

𝜕Ω

(|𝑢|2〈∇̃𝑉, 𝑑𝑥〉 − 𝑉〈∇̃|𝑢|2, 𝑑𝑥〉). 

 

Using the Cauchy-Schwartz inequality we get  

 

∫
Ω

|ℒ𝑉||𝑢|2𝑑𝑥 ≤ 2(
1

𝜖
∫
Ω

|𝑉|2

|ℒ𝑉|
|ℒ𝑢|2𝑑𝑥)

1
2

(𝜖∫
Ω

|ℒ𝑉||𝑢|2𝑑𝑥)

1
2
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−2∫
Ω

𝑉|∇𝔾𝑢|
2𝑑𝑥 − ∫

𝜕Ω

(|𝑢|2〈∇̃𝑉, 𝑑𝑥〉 − 𝑉〈∇̃|𝑢|2, 𝑑𝑥〉) 

≤
1

𝜖
∫
Ω

|𝑉|2

|ℒ𝑉|
|ℒ𝑢|2𝑑𝑥 + 𝜖∫

Ω

|ℒ𝑉||𝑢|2𝑑𝑥 

−2∫
Ω

𝑉|∇𝔾𝑢|
2𝑑𝑥 − ∫

𝜕Ω

(|𝑢|2〈∇̃𝑉, 𝑑𝑥〉 − 𝑉〈∇̃|𝑢|2, 𝑑𝑥〉), 

 

yielding (4.15).  

 C o r o l l a r y  4 . 2 . 2  Let 𝔾  be a stratified group with 𝑁  being the 

dimension of the first stratum. If 𝛼 > −2  and 𝑁 > 𝛼 + 4  then for all 𝑢 ∈
𝐶0
∞(𝔾\{𝑥′ = 0}) we have  

 

 ∫
𝔾\{𝑥′=0}

|ℒ𝑢|2

|𝑥′|𝛼
𝑑𝑥 ≥

(𝑁+𝛼)2(𝑁−𝛼−4)2

16
∫
𝔾\{𝑥′=0}

|𝑢|2

|𝑥′|𝛼+4
𝑑𝑥. (4.16) 

   

P r o o f  o f  C o r o l l a r y  4 . 2 . 2 .  Let us take 𝑉(𝑥) = |𝑥′|−(𝛼+2) in Theorem 

4.2.1, which can be applied since 𝑥′ = 0 is not in the support of 𝑢. Then we have  

 

 ∇𝔾𝑉 = −(𝛼 + 2)|𝑥′|
−𝛼−4𝑥′,        ℒ𝑉 = −(𝛼 + 2)(𝑁 − 𝛼 − 4)|𝑥′|−(𝛼+4). 

 

Let us set 𝐶𝑁,𝛼: = (𝛼 + 2)(𝑁 − 𝛼 − 4). Observing that  

 

 ℒ𝑉 = −𝐶𝑁,𝛼|𝑥′|
−(𝛼+4) < 0, 

 

for |𝑥′| ≠ 0, it follows from (4.2) that  

 

 ∫
𝔾\{𝑥′=0}

|ℒ𝑢|2

|𝑥′|𝛼
𝑑𝑥 ≥ 2𝐶𝑁,𝛼𝜖 ∫𝔾\{𝑥′=0}

|∇𝔾𝑢|
2

|𝑥′|𝛼+2
𝑑𝑥 

 +𝐶𝑁,𝛼
2 𝜖(1 − 𝜖) ∫

𝔾\{𝑥′=0}

|𝑢|2

|𝑥′|𝛼+4
𝑑𝑥. (4.17) 

 

To obtain (4.16), let us apply the 𝐿𝑝-Hardy type inequality (4.2) by taking 𝑉(𝑥) =
|𝑥′|𝛼+2 for 𝛼 ∈ (−2,𝑁 − 4), so that  

 

 ∫
𝔾\{𝑥′=0}

|∇𝔾𝑢|
2

|𝑥′|𝛼+2
𝑑𝑥 ≥

(𝑁−𝛼−4)2

4
∫
𝔾\{𝑥′=0}

|𝑢|2

|𝑥′|𝛼+4
𝑑𝑥, 

 

and then choosing 𝜖 = (𝑁 + 𝛼)/4(𝛼 + 2) for (4.3), which is the choice of 𝜖 that 

gives the maximum right-hand side.  

We can now formulate the 𝐿𝑝 -version of weighted 𝐿𝑝 -Rellich type 

inequalities. 

T h e o r e m  4 . 2 . 3  Let 𝛺 be an admissible domain in a stratified group 𝔾. If 

0 < 𝑉 ∈ 𝐶(𝛺), ℒ𝑉 < 0, and ℒ(𝑉𝜎) ≤ 0 on 𝛺 for some 𝜎 > 1, then for all 𝑢 ∈
𝐶0
∞(𝛺) we have 
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 ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

≤
𝑝2

(𝑝−1)𝜎+1
‖

𝑉

|ℒ𝑉|
𝑝−1
𝑝

ℒ𝑢‖

𝐿𝑝(𝛺)

,    1 ≤ 𝑝 < ∞. (4.18) 

  

Theorem 4.2.3 will follow by Lemma 4.2.5, by putting 𝐶 =
(𝑝−1)(𝜎−1)

𝑝
 in 

Lemma 4.2.4.   

L e m m a  4 . 2 . 4  Let 𝛺 an admissible domain in a stratified group 𝔾. If 𝑉 ≥
0, ℒ𝑉 < 0, and there exists a constant 𝐶 ≥ 0 such that  

 

 𝐶 ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

𝑝

≤ 𝑝(𝑝 − 1) ‖𝑉
1

𝑝|𝑢|
𝑝−2

𝑝 |𝛻𝔾𝑢|
2

𝑝‖
𝐿𝑝(𝛺)

𝑝

,    1 < 𝑝 < ∞, (4.19) 

 

for all 𝑢 ∈ 𝐶0
∞(𝛺), then we have  

 

 (1 + 𝐶) ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(𝛺)

≤ 𝑝‖
𝑉

|ℒ𝑉|
𝑝−1
𝑝

ℒ𝑢‖

𝐿𝑝(𝛺)

, (4.20) 

 

for all 𝑢 ∈ 𝐶0
∞(𝛺). If 𝑝 = 1 then the statement holds for 𝐶 = 0.  

P r o o f  o f  L e m m a  4 . 2 . 4 .  We can assume that 𝑢 is real-valued by using 

the following identity:  

 

 ∀𝑧 ∈ ℂ: |𝑧|𝑝 = (∫
𝜋

−𝜋
|cos𝜗|𝑝𝑑𝜗)

−1
∫
−𝜋

𝜋
|R𝑒(𝑧)cos𝜗 + I𝑚(𝑧)sin𝜗|𝑝𝑑𝜗, 

 

which can be proved by writing 𝑧 = 𝑟(cos𝜙 + 𝑖sin𝜙) and simplifying. 

Let 𝜖 > 0 and set 𝑢𝜖: = (|𝑢|
2 + 𝜖2)𝑝/2 − 𝜖𝑝. Then 0 ≤ 𝑢𝜖 ∈ 𝐶0

∞ and  

 

 ∫
Ω
|ℒ𝑉|𝑢𝜖𝑑𝑥 = −∫Ω (ℒ𝑉)𝑢𝜖𝑑𝑥 = −∫Ω 𝑉ℒ𝑢𝜖𝑑𝑥, 

 

where  

 

ℒ𝑢𝜖 = ℒ ((|𝑢|
2 + 𝜖2)

𝑝
2 − 𝜖𝑝) = ∇𝔾 ⋅ (∇𝔾((|𝑢|

2 + 𝜖2)
𝑝
2 − 𝜖𝑝)) 

= ∇𝔾(𝑝(|𝑢|
2 + 𝜖2)

𝑝−2
2 𝑢∇𝔾𝑢) 

= 𝑝(𝑝 − 2)(|𝑢|2 + 𝜖2)
𝑝−4
2 𝑢2|∇𝔾𝑢|

2 + 𝑝(|𝑢|2 + 𝜖2)
𝑝−2
2 |∇𝔾𝑢|

2 + 𝑝(|𝑢|2

+ 𝜖2)
𝑝−2
2 𝑢ℒ𝑢. 

 Then  

 

∫
Ω

|ℒ𝑉|𝑢𝜖𝑑𝑥 = −∫
Ω

(𝑝(𝑝 − 2)𝑢2(𝑢2 + 𝜖2)
𝑝−4
2 + 𝑝(𝑢2 + 𝜖2)

𝑝−2
2 )𝑉|∇𝔾𝑢|

2𝑑𝑥 

         −𝑝 ∫
Ω
𝑉𝑢(𝑢2 + 𝜖2)

𝑝−2

2 ℒ𝑢𝑑𝑥. 
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Hence 

  

 ∫
Ω
|ℒ𝑉|𝑢𝜖 + (𝑝(𝑝 − 2)𝑢

2(𝑢2 + 𝜖2)
𝑝−4

2 + 𝑝(𝑢2 + 𝜖2)
𝑝−2

2 )𝑉|∇𝔾𝑢|
2𝑑𝑥 

 ≤ 𝑝∫
Ω
𝑉|𝑢|(𝑢2 + 𝜖2)

𝑝−2

2 |ℒ𝑢|𝑑𝑥. 

 

When 𝜖 → 0 the integrand on the right is bounded by 𝑉(max|𝑢|2 +
1)(𝑝−1)/2max|ℒ𝑢| and it is integrable because 𝑢 ∈ 𝐶0

∞(Ω), and so the integral tends 

to ∫
Ω
𝑉|𝑢|𝑝−1|ℒ𝑢|𝑑𝑥 by the dominated convergence theorem. The integrand on the 

left is non-negative and tends to |ℒ𝑉||𝑢|𝑝 + 𝑝(𝑝 − 1)𝑉|𝑢|𝑝−2|∇𝔾𝑢|
2  pointwise, 

only for 𝑢 ≠ 0 when 𝑝 < 2, otherwise for any 𝑥. It then follows by Fatou's lemma 

that  

 

‖|ℒ𝑉|
1
𝑝𝑢‖

𝐿𝑝(Ω)

𝑝

+ 𝑝(𝑝 − 1) ‖𝑉
1
𝑝|𝑢|

𝑝−2
𝑝 |∇𝔾𝑢|

2
𝑝‖

𝐿𝑝(Ω)

𝑝

≤ 𝑝‖𝑉
1
𝑝|𝑢|

𝑝−1
𝑝 |ℒ𝑢|

1
𝑝‖

𝐿𝑝(Ω)

𝑝

. 

 

By using (4.19), followed by the Hölder inequality, we obtain  

 

 (1 + 𝐶) ‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

𝑝

≤ 𝑝‖|ℒ𝑉|(𝑝−1)𝑉
1

𝑝|𝑢|
𝑝−1

𝑝 |ℒ𝑉|−(𝑝−1)|ℒ𝑢|
1

𝑝‖
𝑝

 

 ≤ 𝑝‖|ℒ𝑉|
1

𝑝𝑢‖
𝐿𝑝(Ω)

𝑝−1

‖
|𝑉|

|ℒ𝑉|
𝑝−1
𝑝

ℒ𝑢‖

𝐿𝑝(Ω)

. 

 

This implies (4.20).  

L e m m a  4 . 2 . 5  Let 𝛺 be an admissible domain in a stratified group 𝔾. If 

0 < 𝑉 ∈ 𝐶(𝛺), ℒ𝑉 < 0, and ℒ𝑉𝜎 ≤ 0 on 𝛺 for some 𝜎 > 1, then we have 

  

(𝜎 − 1)∫
𝛺

|ℒ𝑉||𝑢|𝑝𝑑𝑥 ≤ 𝑝2∫
{𝑥∈𝛺,𝑢(𝑥)≠0}

𝑉|𝑢|𝑝−2|𝛻𝔾𝑢|
2𝑑𝑥 < ∞,    1 < 𝑝 < ∞, 

  (4.21) 

for all 𝑢 ∈ 𝐶0
∞(𝛺). 

P r o o f  o f  L e m m a  4 . 2 . 5 .  We shall use that  

 

 0 ≥ ℒ(𝑉𝜎) = 𝜎𝑉𝜎−2((𝜎 − 1)|∇𝔾𝑉|
2 + 𝑉ℒ𝑉), (4.22) 

 

and hence  

 

 (𝜎 − 1)|∇𝔾𝑉|
2 ≤ 𝑉|ℒ𝑉|. 

 

Now we use the inequality (4.2) for 𝑝 = 2 to get  

 

 (𝜎 − 1)∫
Ω
|ℒ𝑉||𝑢|2𝑑𝑥 ≤ 4(𝜎 − 1)∫

Ω

|∇𝔾𝑉|
2

|ℒ𝑉|
|∇𝔾𝑢|

2𝑑𝑥 
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 ≤ 4∫
Ω
𝑉|∇𝔾𝑢|

2𝑑𝑥 = 4∫
{𝑥∈Ω;𝑢(𝑥)≠0,|∇𝔾𝑢|≠0}

𝑉|∇𝔾𝑢|
2𝑑𝑥, (4.23) 

 

the last equality valid since |{𝑥 ∈ Ω; 𝑢(𝑥) = 0, |∇𝔾𝑢| ≠ 0}| = 0 . This proves 

Lemma 4.2.5 for 𝑝 = 2. 

For 𝑝 ≠ 2, put 𝑣𝜖 = (𝑢
2 + 𝜖2)𝑝/4 − 𝜖𝑝/2 , and let 𝜖 → 0. Since 0 ≤ 𝑣𝜖 ≤

|𝑢|
𝑝

2 , the left-hand side of (23), with 𝑢  replaced by 𝑣𝜖 , tends to (𝜎 −
1)∫

Ω
|ℒ𝑉||𝑢|𝑝𝑑𝑥 by the dominated convergence theorem. If 𝑢 ≠ 0, then  

 

|∇𝔾𝑣𝜖|
2𝑉 = |

𝑝

2
𝑢(𝑢2 + 𝜖2)

𝑝−4
4 ∇𝔾𝑢|

2

𝑉. 

 

For 𝜖 → 0 we obtain  

 

 |∇𝔾𝑢|
𝑝𝑉 =

𝑝2

4
|𝑢|𝑝−2|∇𝔾𝑢|

2𝑉. 

 

It follows as in the proof of Lemma 4.2.4, by using Fatou's lemma, that the right-hand 

side of (4.23) tends to  

 

 𝑝2 ∫
{𝑥∈Ω;𝑢(𝑥)≠0,|∇𝔾𝑢|≠0}

𝑉|𝑢|𝑝−2|∇𝔾𝑢|
2𝑑𝑥, 

 

and this completes the proof.  

C o r o l l a r y  4 . 2 . 6  Let 𝔾 be a stratified group with 𝑁 being the dimension 

of the first stratum. Then for any 2 < 𝛼 < 𝑁 and all 𝑢 ∈ 𝐶0
∞(𝔾\{𝑥′ = 0}) we have 

the inequality 

  

 ∫
𝔾

|𝑢|𝑝

|𝑥′|𝛼
𝑑𝑥 ≤ 𝐶(𝑁,𝑝,𝛼)

𝑝
∫
𝔾

|ℒ𝑢|𝑝

|𝑥′|𝛼−2𝑝
𝑑𝑥, (4.24) 

 

where  

 𝐶(𝑁,𝑝,𝛼) =
𝑝2

(𝑁−𝛼)((𝑝−1)𝑁+𝛼−2𝑝)
. (4.25) 

 

P r o o f  o f  C o r o l l a r y  4 . 2 . 6 .  Let us choose 𝑉 = |𝑥′|−(𝛼−2) in Theorem 

4.2.3, so that  

 

 ℒ𝑉 = −(𝛼 − 2)(𝑁 − 𝛼)|𝑥′|−𝛼 , 
 

and we note that when 2 < 𝛼 < 𝑁, we have ℒ𝑉 < 0 for |𝑥′| ≠ 0. Now it follows 

from (4.18) that  

 

 (𝛼 − 2)𝑝(𝑁 − 𝛼)𝑝 ∫
𝔾

|𝑢|𝑝

|𝑥′|𝛼
𝑑𝑥 ≤

𝑝2𝑝

[(𝑝−1)𝜎+1]𝑝
∫
𝔾

|ℒ𝑢|𝑝

|𝑥′|𝛼−2𝑝
𝑑𝑥. (4.26) 
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By taking 𝜎 = (𝑁 − 2)/(𝛼 − 2), we arrive at  

 

 ∫
𝔾

|𝑢|𝑝

|𝑥′|𝛼
𝑑𝑥 ≤

𝑝2𝑝

(𝑁−𝛼)𝑝((𝑝−1)𝑁+𝛼−2𝑝)𝑝
∫
𝔾

|ℒ𝑢|𝑝

|𝑥′|𝛼−2𝑝
𝑑𝑥, 

 

which proves (4.24)–(4.25).  

C o r o l l a r y  4 . 2 . 7  Let 𝔾 be a stratified Lie group and let 𝑑 = 휀
1

2−𝑄, where 

휀 is the fundamental solution of the sub-Laplacian ℒ. Assume that 𝑄 ≥ 3, 𝛼 < 2, 

and 𝑄 + 𝛼 − 4 > 0. Then for all 𝑢 ∈ 𝐶0
∞(𝔾\{0}) we have  

 

 
(𝑄+𝛼−4)2(𝑄−𝛼)2

16
∫
𝔾
𝑑𝛼−4|𝛻𝔾𝑑|

2|𝑢|2𝑑𝑥 ≤ ∫
𝔾

𝑑𝛼

|𝛻𝔾𝑑|
2
|ℒ𝑢|2𝑑𝑥. (4.27) 

 

The inequality (4.27) was obtained by Kombe [68], but now we get it as an 

immediate consequence of Theorem 4.2.3.  

P r o o f  o f  C o r o l l a r y  4 . 2 . 7 .  Let us choose 𝑉 = 𝑑𝛼−2 in Theorem 4.2.3. 

Then  

 

 ℒ𝑉 = (𝛼 − 2)(𝑄 + 𝛼 − 4)𝑑𝛼−4|∇𝔾𝑑|
2. 

 

Note that for 𝑄 + 𝛼 − 4 > 0 and 𝛼 < 2, we have ℒ𝑉 < 0 for all 𝑥 ≠ 0. If 𝑝 = 2 

then from (18) it follows that  

 

(𝛼 − 2)2(𝑄 + 𝛼 − 4)2 ∫
𝔾
𝑑𝛼−4|∇𝔾𝑑|

2|𝑢|2𝑑𝑥 ≤
16

(𝜎+1)2
∫
𝔾

𝑑𝛼

|∇𝔾𝑑|
2
|ℒ𝑢|2𝑑𝑥. 

 

By taking 𝜎 = (𝑄 − 2𝛼 + 2)/(𝛼 − 2) we get  

 

 
(𝑄+𝛼−4)2(𝑄−𝛼)2

16
∫
𝔾
𝑑𝛼−4|∇𝔾𝑑|

2|𝑢|2𝑑𝑥 ≤ ∫
𝔾

𝑑𝛼

|∇𝔾𝑑|
2
|ℒ𝑢|2𝑑𝑥, 

 

 proving inequality (4.27).  

R e m a r k  4 . 2 . 8  In the abelian case, when 𝔾 ≡ (ℝ𝑛, +) with 𝑑 = |𝑥| being 

the Euclidean norm, and 𝛼 = 0 in inequality (4.27), we recover the classical Rellich 

inequality [69].  

 

4.3  Hardy type inequalities on ℍ𝒒 

In this section, we present a Hardy type inequality on the quaternion 

Heisenberg group. The proof of Theorem 3 relies on properties of the fundamental 

solution of the sub-Laplacian ℒ on the quaternion Heisenberg group. 

We recall the sub-Laplacian on ℍ𝑞  

 

 ℒ = ∑3𝑗=0 𝑋𝑗
2 = Δ𝑥 − 4|𝑥|

2Δ𝑡 − 4∑
3
𝑘=1 (𝑖𝑘𝑥 ⋅ ∇𝑥)

𝜕

𝜕𝑡𝑘
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where  

 Δ𝑥 = ∑
3
𝑘=0

𝜕2

𝜕𝑥𝑘
2 ,    and    Δ𝑡 = ∑

3
𝑘=1

𝜕2

𝜕𝑡𝑘
2. 

 

Note that the fundamental solution of the sub-Laplacian ℒ on ℍ𝑞 was found by Tie 

and Wong. We restate their results in the following theorem. 

T h e o r e m  4 . 3 . 1  The fundamental solution 𝛤(𝜉) of the sub-Laplacian ℒ 

on the quaternion Heisenberg group ℍ𝑞 is given by  

 

 𝛤(𝜉):= 𝛤(|𝑥|, 𝑡) =
2

(2𝜋)7/2|𝑥|2
∫
𝑆2

1

(|𝑥|2−𝑖(𝑡⋅𝑛))3
𝑑𝜎 (4.28) 

 

where 𝜉 = (𝑥, 𝑡) ∈ ℍ𝑞, 𝑛 = (𝑛1, 𝑛2, 𝑛3) is a point on the unite sphere 𝑆2 in ℝ3 

with center at the origin, and 𝑑𝜎 is the surface measure on 𝑆2. That is,  

 

 ℒ𝛤𝜁 = −𝛿𝜁 , (4.29) 

 

where 𝛤𝜁(𝜉) = 𝛤(휁
−1 ∘ 𝜉) and 𝛿𝜁 is the Dirac distribution at 휁 ≡ (𝑦, 𝜏) ∈ ℍ𝑞.  

The quaternion Heisenberg group is a special case of the model step two 

nilpotent Lie group. Moreover, it is a homogeneous Lie group with respect to the 

dilation  

 

 𝛿𝜆: ℝ
7 → ℝ7,    𝛿𝜆 = (𝜆𝑥, 𝜆

2𝑡). 
Thus,  

 

 𝑑(𝜉) =
1

Γ1/8(𝜉)
,    𝜉 = (𝑥, 𝑡) ∈ ℍ𝑞 , (4.30) 

 

is a homogeneous quasi-norm on ℍ𝑞 with respect to the dilation 𝛿𝜆 [70]. 

T h e o r e m  4 . 3 . 2  Let 𝛼 ∈ ℝ, 𝛼 > 2 − 𝛽, 𝛽 > 2. Then the following version 

of the Hardy inequality is valid:  

 ‖𝛤
𝛼

2(2−𝛽)|𝛻𝑢|‖
𝐿2(ℍ𝑞)

≥
|𝛽+𝛼−2|

2
‖𝛤

𝛼−2

2(2−𝛽)|𝛻𝛤
1

2−𝛽||𝑢|‖
𝐿2(ℍ𝑞)

 (4.31) 

 for any 𝑢 ∈ 𝐶0
∞(ℍ𝑞), where 𝛻 = (𝑋0, 𝑋1, 𝑋2, 𝑋3).  

P r o o f  o f  T h e o r e m  4 . 3 . 2 .  Let (∇̃𝑓)𝑔:= ∑3𝑘=0 𝑋𝑘𝑓𝑋𝑘𝑔  for any 

differentiable functions 𝑓 and 𝑔. Setting 𝑢 = 𝑑𝛾𝑞 for some (real-valued) functions 

𝑑 > 0, 𝑞, and a constant 𝛾 = 0 to be chosen later, we have 

  

(∇̃𝑢)𝑢 = (∇̃𝑑𝛾𝑞)𝑑𝛾𝑞 = ∑

3

𝑘=0

𝑋𝑘(𝑑
𝛾𝑞)𝑋𝑘(𝑑

𝛾𝑞) 

= 𝛾2𝑑2𝛾−2∑

3

𝑘=0

(𝑋𝑘𝑑)
2𝑞2 + 2𝛾𝑑2𝛾−1𝑞∑

3

𝑘=0

𝑋𝑘𝑑𝑋𝑘𝑞 + 𝑑
2𝛾∑

3

𝑘=0

(𝑋𝑘𝑞)
2 
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= 𝛾2𝑑2𝛾−2((∇̃𝑑)𝑑)𝑞2 + 2𝛾𝑑2𝛾−1𝑞(∇̃𝑑)𝑞 + 𝑑2𝛾(∇̃𝑞)𝑞. 
 

Integrating by parts we observe that  

 

2𝛾∫
ℍ𝑞

𝑑𝛼+2𝛾−1𝑞(∇̃𝑑)𝑞𝑑𝑥 =
𝛾

𝛼 + 2𝛾
∫
ℍ𝑞

(∇̃𝑑𝛼+2𝛾)𝑞2𝑑𝑥 

=
𝛾

𝛼 + 2𝛾
∫
ℍ𝑞

(∇̃𝑞2)𝑑𝛼+2𝛾𝑑𝑥 = −
𝛾

𝛼 + 2𝛾
∫
ℍ𝑞

𝑞2ℒ𝑑𝛼+2𝛾𝑑𝑥, 

 

where we note that later on we will choose 𝛾 so that 𝑑𝛼+2𝛾 = Γ. Consequently, we 

get  

 

∫
ℍ𝑞

𝑑𝛼(∇̃𝑢)𝑢𝑑𝑥 = 𝛾2∫
ℍ𝑞

𝑑𝛼+2𝛾−2((∇̃𝑑)𝑑) 𝑞2𝑑𝑥 +
𝛾

𝛼 + 2𝛾
∫
ℍ𝑞

(∇̃𝑑𝛼+2𝛾)𝑞2𝑑𝑥 

 +∫
ℍ𝑞
𝑑𝛼+2𝛾(∇̃𝑞)𝑞𝑑𝑥 

 = 𝛾2 ∫
ℍ𝑞
𝑑𝛼+2𝛾−2((∇̃𝑑)𝑑) 𝑞2𝑑𝑥 −

𝛾

𝛼+2𝛾
∫
ℍ𝑞
𝑞2ℒ𝑑𝛼+2𝛾𝑑𝑥 

 +∫
ℍ𝑞
𝑑𝛼+2𝛾(∇̃𝑞)𝑞𝑑𝑥 

 ≥ 𝛾2 ∫
ℍ𝑞
𝑑𝛼+2𝛾−2((∇̃𝑑)𝑑) 𝑞2𝑑𝑥 −

𝛾

𝛼+2𝛾
∫
ℍ𝑞
𝑞2ℒ𝑑𝛼+2𝛾𝑑𝑥, (4.32) 

 

since 𝑑 > 0 and (∇̃𝑞)𝑞 = |∇𝑞|2 ≥ 0. On the other hand, it can be readily checked 

that for a vector field 𝑋 we have  

 

 
𝛾

𝛼+2𝛾
𝑋2(𝑑𝛼+2𝛾) = 𝛾𝑋(𝑑𝛼+2𝛾−1𝑋𝑑) =

𝛾

2−𝛽
𝑋(𝑑𝛼+2𝛾+𝛽−2𝑋(𝑑2−𝛽)) 

 =
𝛾

2−𝛽
(𝛼 + 2𝛾 + 𝛽 − 2)𝑑𝛼+2𝛾+𝛽−3(𝑋𝑑)𝑋(𝑑2−𝛽) 

 +
𝛾

2−𝛽
𝑑𝛼+2𝛾+𝛽−2𝑋2(𝑑2−𝛽) 

 = 𝛾(𝛼 + 2𝛾 + 𝛽 − 2)𝑑𝛼+2𝛾−2(𝑋𝑑)2 

 +
𝛾

2−𝛽
𝑑𝛼+2𝛾+𝛽−2𝑋2(𝑑2−𝛽). 

 

Consequently, we get the equality  

 

−
𝛾

𝛼+2𝛾
ℒ𝑑𝛼+2𝛾 = −𝛾(𝛼 + 2𝛾 + 𝛽 − 2)𝑑𝛼+2𝛾−2(∇̃𝑑)𝑑 −

𝛾

2−𝛽
𝑑𝛼+2𝛾+𝛽−2ℒ𝑑2−𝛽 . (4.33) 

 

Since 𝑞2 = 𝑑−2𝛾𝑢2, substituting (4.33) into (4.32) we obtain  

 

 ∫
ℍ𝑞
𝑑𝛼(∇̃𝑢)𝑢𝑑𝑥 ≥ (−𝛾2 − 𝛾(𝛼 + 𝛽 − 2))∫

ℍ𝑞
𝑑𝛼−2((∇̃𝑑)𝑑)𝑢2𝑑𝑥 

 −
𝛾

2−𝛽
∫
ℍ𝑞
(ℒ𝑑2−𝛽)𝑑𝛼+𝛽−2𝑢2𝑑𝑥. 
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Taking 𝑑 = Γ
1

2−𝛽, 𝛽 > 2, concerning the second term we observe that  

 

 ∫
ℍ𝑞
(ℒΓ)Γ

𝛼+𝛽−2

2−𝛽 𝑢2𝑑𝑥 = (
1

Γ(𝑒)
)

𝛼+𝛽−2

𝛽−2
𝑢2(𝑒) = 0, 𝛼 > 2 − 𝛽, 𝛽 > 2, (4.34) 

 

since Γ is the fundamental solution of the sub-Laplacian ℒ. Here 𝑒 = (0,0,0,0) is 

the identity element of ℍ𝑞. Thus, with 𝑑 = Γ
1

2−𝛽, 𝛽 > 2, we obtain  

 

∫
ℍ𝑞
Γ

𝛼

2−𝛽(∇̃𝑢)𝑢 𝑑𝑥 ≥ (−𝛾2 − 𝛾(𝛼 + 𝛽 − 2))∫
ℍ𝑞
Γ
𝛼−2

2−𝛽(∇̃Γ
1

2−𝛽)Γ
1

2−𝛽𝑢2 𝑑𝑥. (4.35) 

 

Now taking 𝛾 =
2−𝛽−𝛼

2
, we arrive at (4.31).  

Theorem 4.3.2 implies the following uncertainty principles: 

C o r o l l a r y  4 . 3 . 3  [Uncertainty principle on ℍ𝑞] Let 𝛽 > 2. Then for any 

𝑢 ∈ 𝐶0
∞(ℍ𝑞) we have  

∫
ℍ𝑞
𝛤

2

2−𝛽|𝛻𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥 ∫
ℍ𝑞
|𝛻𝑢|2𝑑𝑥 ≥ (

𝛽−2

2
)
2

(∫
ℍ𝑞
|𝛻𝛤

1

2−𝛽|2|𝑢|2𝑑𝑥)
2

, (4.36) 

 and also  

 ∫
ℍ𝑞

𝛤
2
2−𝛽

|𝛻𝛤
1
2−𝛽|2

|𝑢|2𝑑𝑥 ∫
ℍ𝑞
|𝛻𝑢|2𝑑𝑥 ≥ (

𝛽−2

2
)
2

(∫
ℍ𝑞
|𝑢|2𝑑𝑥)

2
. (4.37) 

   

P r o o f  o f  C o r o l l a r y  4 . 3 . 3 .  By taking 𝛼 = 0 in the inequality (31) we 

get  

 

∫
ℍ𝑞

Γ
2
2−𝛽|∇Γ

1
2−𝛽|2|𝑢|2𝑑𝑥∫

ℍ𝑞

|∇𝑢|2𝑑𝑥

≥ (
𝛽 − 2

2
)
2

∫
ℍ𝑞

Γ
2
2−𝛽|∇Γ

1
2−𝛽|2|𝑢|2𝑑𝑥∫

ℍ𝑞

|∇Γ
1
2−𝛽|2

Γ
2
2−𝛽

|𝑢|2 𝑑𝑥 

 ≥ (
𝛽−2

2
)
2

(∫
ℍ𝑞
|∇Γ

1

2−𝛽|2|𝑢|2𝑑𝑥)
2

, 

 

where we have used the Hölder inequality in the last line. This shows (4.36). The 

proof of (4.37) is similar.  

 

4.4  Rellich type inequalities on ℍ𝒒 

In this section, we present a version of the Rellich inequality on the quaternion 

Heisenberg group ℍ𝑞. 

T h e o r e m  4 . 4 . 1  Let 𝛼 ∈ ℝ , 𝛽 > 𝛼 > 4 − 𝛽  and 𝛽 > 2 . Then the 

following version of the Rellich inequality is valid:  
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 ‖
𝛤

𝛼
2(2−𝛽)

|𝛻𝛤
1

2−𝛽|

|ℒ𝑢|‖

𝐿2(ℍ𝑞)

≥
(𝛽+𝛼−4)(𝛽−𝛼)

4
‖𝛤

𝛼−4

2(2−𝛽)|𝛻𝛤
1

2−𝛽|𝑢‖
𝐿2(ℍ𝑞)

 (4.38) 

 

for any 𝑢 ∈ 𝐶0
∞(ℍ𝑞),  where 𝛻 = (𝑋0, 𝑋1, 𝑋2, 𝑋3)  is the gradient and ℒ  is the 

sub-Laplacian on the quaternion Heisenberg group ℍ𝑞  as defined in the 

introduction.  

P r o o f  o f  T h e o r e m  4 . 4 . 1 .  A direct calculation shows that  

 

 ℒΓ
𝛼−2

2−𝛽 = ∑3𝑘=0 𝑋𝑘
2Γ

𝛼−2

2−𝛽 = (𝛼 − 2)∑3𝑘=0 𝑋𝑘 (Γ
𝛼−3

2−𝛽𝑋𝑘Γ
1

2−𝛽) 

= (𝛼 − 2)(𝛼 − 3)Γ
𝛼−4
2−𝛽∑

3

𝑘=0

|𝑋𝑘Γ
1
2−𝛽|

2

+ (𝛼 − 2)Γ
𝛼−3
2−𝛽∑

3

𝑘=0

𝑋𝑘 (𝑋𝑘Γ
1
2−𝛽) 

 = (𝛼 − 2)(𝛼 − 3)Γ
𝛼−4

2−𝛽∑3𝑘=0 |𝑋𝑘Γ
1

2−𝛽|
2

+
𝛼−2

2−𝛽
Γ
𝛼−3

2−𝛽∑3𝑘=0 𝑋𝑘 (Γ
𝛽−1

2−𝛽𝑋𝑘Γ) 

= (𝛼 − 2)(𝛼 − 3)Γ
𝛼−4
2−𝛽∑

3

𝑘=0

|𝑋𝑘Γ
1
2−𝛽|

2

+
(𝛼 − 2)(𝛽 − 1)

2 − 𝛽
Γ
𝛼−3
2−𝛽Γ−1∑

3

𝑘=0

(𝑋𝑘Γ
1
2−𝛽)(𝑋𝑘Γ) 

 +
𝛼−2

2−𝛽
Γ
𝛽+𝛼−4

2−𝛽 ℒΓ = (𝛼 − 2)(𝛼 − 3)Γ
𝛼−4

2−𝛽∑3𝑘=0 |𝑋𝑘Γ
1

2−𝛽|
2

 

 +(𝛼 − 2)(𝛽 − 1)Γ
𝛼−4

2−𝛽∑3𝑘=0 (𝑋𝑘Γ
1

2−𝛽)(𝑋𝑘Γ
1

2−𝛽) +
𝛼−2

2−𝛽
Γ
𝛽+𝛼−4

2−𝛽 ℒΓ 

 = (𝛽 + 𝛼 − 4)(𝛼 − 2)Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2 +
𝛼−2

2−𝛽
Γ
𝛽+𝛼−4

2−𝛽 ℒΓ, 

 

that is,  

 

 ℒΓ
𝛼−2

2−𝛽 = (𝛽 + 𝛼 − 4)(𝛼 − 2)Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2 +
𝛼−2

2−𝛽
Γ
𝛽+𝛼−4

2−𝛽 ℒΓ. (4.39) 

 

As before we can assume that 𝑢 is real-valued. Multiplying both sides of (4.39) by 

𝑢2 and integrating over ℍ𝑞, since Γ is the fundamental solution of ℒ and 𝛽 +

𝛼 − 4 > 0, we get  

 

 ∫
ℍ𝑞
𝑢2ℒΓ

𝛼−2

2−𝛽 𝑑𝑥 = (𝛽 + 𝛼 − 4)(𝛼 − 2)∫
ℍ𝑞
Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2𝑢2 𝑑𝑥. (4.40) 

 

On the other hand, integrating by parts, we have  

 



 84 

∫
ℍ𝑞
𝑢2ℒΓ

𝛼−2

2−𝛽 𝑑𝑥 = ∫
ℍ𝑞
Γ
𝛼−2

2−𝛽ℒ𝑢2 𝑑𝑥 = ∫
ℍ𝑞
Γ
𝛼−2

2−𝛽(2𝑢ℒ𝑢 + 2|∇𝑢|2) 𝑑𝑥, (4.41) 

 

Combining (4.40) and (4.41) we obtain  

 

 −2∫
ℍ𝑞
Γ
𝛼−2

2−𝛽𝑢ℒ𝑢𝑑𝑥 + (𝛽 + 𝛼 − 4)(𝛼 − 2)∫
ℍ𝑞
Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2 𝑢2𝑑𝑥 

 = 2∫
ℍ𝑞
Γ
𝛼−2

2−𝛽|∇𝑢|2𝑑𝑥. (4.42) 

 

By using (4.31) we establish  

 

 −2∫
ℍ𝑞
Γ
𝛼−2

2−𝛽𝑢ℒ𝑢𝑑𝑥 + (𝛽 + 𝛼 − 4)(𝛼 − 2)∫
ℍ𝑞
Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2 |𝑢|2𝑑𝑥 

 ≥ 2(
𝛽+𝛼−4

2
)
2

∫
ℍ𝑞
Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2|𝑢|2 𝑑𝑥. (4.43) 

 

It follows that  

 

 −∫
ℍ𝑞
Γ
𝛼−2

2−𝛽𝑢ℒ𝑢𝑑𝑥 ≥ (
𝛽+𝛼−4

2
) (

𝛽−𝛼

2
)∫
ℍ𝑞
Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2|𝑢|2 𝑑𝑥. (4.44) 

 

On the other hand, for any 𝜖 > 0 Hölder's and Young's inequalities give 

  

−∫
ℍ𝑞

Γ
𝛼−2
2−𝛽𝑢ℒ𝑢𝑑𝑥 ≤ (∫

ℍ𝑞

Γ
𝛼−4
2−𝛽|∇Γ

1
2−𝛽|2|𝑢|2𝑑𝑥)

1
2

(∫
ℍ𝑞

Γ
𝛼
2−𝛽

|∇Γ
1
2−𝛽|2

|ℒ𝑢|2𝑑𝑥)

1
2

 

 ≤ 𝜖 ∫
ℍ𝑞
Γ
𝛼−4

2−𝛽|∇Γ
1

2−𝛽|2|𝑢|2𝑑𝑥 +
1

4𝜖
∫
ℍ𝑞

Γ
𝛼
2−𝛽

|∇Γ
1
2−𝛽|2

|ℒ𝑢|2𝑑𝑥. (4.45) 

 

Inequalities (4.45) and (4.44) imply that  

 

∫
ℍ𝑞

Γ
𝛼
2−𝛽

|∇Γ
1
2−𝛽|2

|ℒ𝑢|2𝑑𝑥 ≥ (−4𝜖2 + (𝛽 + 𝛼 − 4)(𝛽 − 𝛼)𝜖)∫
ℍ𝑞

Γ
𝛼−4
2−𝛽|∇Γ

1
2−𝛽|2|𝑢|2 𝑑𝑥. 

 

 Taking 𝜖 =
(𝛽+𝛼−4)(𝛽−𝛼)

8
, we arrive at  

∫
ℍ𝑞

Γ
𝛼
2−𝛽

|∇Γ
1
2−𝛽|2

|ℒ𝑢|2𝑑𝑥 ≥
(𝛽 + 𝛼 − 4)2(𝛽 − 𝛼)2

16
∫
ℍ𝑞

Γ
𝛼−4
2−𝛽|∇Γ

1
2−𝛽|2|𝑢|2 𝑑𝑥. 
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5  WEIGHTED ANISOTROPIC HARDY AND RELLICH TYPE 

INEQUALITIES FOR GENERAL VECTOR FIELDS 

 

This chapter is devoted to the weighted anisotropic Hardy and Rellich type 

inequalities with boundary terms for general (real-valued) vector fields. The 

consequences recover many previously known results in different settings. The 

anisotropic Picone type identities play key roles in our proofs. 

Recall the Hardy inequality for Ω ⊂ ℝ𝑛 stating that  

 

 ∫
Ω
|∇𝑢|𝑝𝑑𝑥 ≥ 𝐶 ∫

Ω

|𝑢|𝑝

|𝑥|𝑝
𝑑𝑥, 𝑢 ∈ 𝐶0

1(Ω), (5.1) 

 

where ∇ is the Euclidean gradient and 𝑝 > 1. It has been vastly studied by many 

authors and developed in different settings [71] and the references therein. 

 

First, let us review some of the recent results: 

- Hardy type inequalities in the setting of the Heisenberg group ℍ𝑛 have the 

following form  

 

                          ∫
ℍ𝑛
|∇𝐻𝑢|

2𝑑𝑥 ≥ 𝐶 ∫
ℍ𝑛

𝜓𝐻
2

𝜌2
|𝑢|2𝑑𝑥, 𝑢 ∈ 𝐶0

1(ℍ𝑛\{0}), (5.2) 

 

where ∇𝐻 is a (horizontal) gradient associated to the sub-Laplacian, 𝜓𝐻 and 𝜌 are 

a weight function and a suitable distance from the origin, respectively. For example, 

Garofalo and Lanconelli in [18, P. 330-334], D'Ambrosio in [35, P. 513-514], Niu, 

Zhang and Wang in [72], and others have made a contribution to prove the above 

inequality and its extensions in ℍ𝑛.  

- Hardy type inequalities in the setting of the Carnot group 𝔾 can be given by 

the formula  

 

∫
𝔾
𝑑𝛼|∇𝐻𝑢|

2𝑑𝑥 ≥ 𝐶 ∫
𝔾
𝑑𝛼−2|∇𝐻𝑑|

2|𝑢|2𝑑𝑥, 𝑢 ∈ 𝐶0
∞(𝔾\{0}), (5.3) 

 

where ∇𝐻 is the horizontal gradient on 𝔾, 𝛼 ∈ ℝ, and 𝑑 is a homogeneous norm 

associated with a fundamental solution for the sub-Laplacian. For instance, the Hardy 

type inequalities on 𝔾 have been studied by Ruzhansky and Suragan in [61, P. 

1815-1816], Kombe in [68, P. 255-256], Goldstein, Kombe and Yener in [71, P. 

2015-2016], Wang and Niu in [73].  

- Hardy type inequalities in the setting of general vector fields can be presented 

in the form  

 

∫
Ω
|∇𝑋𝑢|

𝑝𝑑𝑥 ≥ 𝐶 ∫
Ω

|∇𝑋𝜙|
𝑝

𝜙𝑝
|𝑢|𝑝𝑑𝑥, 𝑢 ∈ 𝐶0

1(Ω), (5.4) 

 

where ∇𝑋: = (𝑋1, … , 𝑋𝑁) and 𝜙 is any positive weight function. To the best of our 

knowledge, D'Ambrosio obtained first versions of Hardy type inequalities for general 
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vector fields in [74].  

Consider a family of real vector fields {𝑋𝑘}𝑘=1
𝑁 , 𝑁 ≤ 𝑛, on a smooth manifold 

𝑀 with dimension 𝑛 and a volume form 𝑑𝑥.  

 

 ∫
Ω
𝑊(𝑥)|∇𝑋𝑢|

𝑝𝑑𝑥 ≥ ∫
Ω
𝐻(𝑥)|𝑢|𝑝𝑑𝑥, 𝑢 ∈ 𝐶0

1(Ω), 

 

with the hypothesis  

 

 −∇𝑋 ⋅ (𝑊(𝑥)|∇𝑋𝑣|
𝑝−2∇𝑋𝑣) ≥ 𝐻(𝑥)𝑣

𝑝−1, 
 

where ∇𝑋= (𝑋1, 𝑋2, … , 𝑋𝑁) is the associated gradient and 𝑣 is a function satisfying 

the above hypothesis. From this weighted Hardy type inequality, we recover most of 

the fundamental Hardy type inequalities including (5.2), (5.3) and (5.4). In Section 

5.2, we prove the weighted anisotropic Rellich type inequality for general vector 

fields. 

 

5.1  Weighted anisotropic Hardy type inequality 

In this section, we obtain the weighted anisotropic Hardy type inequalities for 

general (real-valued) vector fields. It will be proved by using the anisotropic Picone 

type identity. As consequences, we discover most of the Hardy type inequalities and 

the uncertainty principles which are known in the setting of the Euclidean space, 

Heisenberg and Carnot groups. 

Consider a family of real vector fields {𝑋𝑘}𝑘=1
𝑁 , 𝑁 ≤ 𝑛, on a smooth manifold 

𝑀 with dimension 𝑛 and a volume form 𝑑𝑥. Then we say that an open bounded set 

Ω ⊂ 𝑀 is an admissible domain if its boundary 𝜕Ω has no self-intersections, and if 

the vector fields {𝑋𝑘}𝑘=1
𝑁  satisfy  

 

 ∑𝑁𝑘=1 ∫Ω 𝑋𝑘𝑓𝑘𝑑𝑥 = ∑
𝑁
𝑘=1 ∫𝜕Ω 𝑓𝑘〈𝑋𝑘 , 𝑑𝑥〉, (5.5) 

 

for all 𝑓𝑘 ∈ 𝐶
1(Ω) ∩ 𝐶(Ω), 𝑘 = 1,… ,𝑁. 

First, we formulate an assumption which is important for presenting some 

examples of Theorem 5.1.3 and of other related results:  

A s s u m p t i o n  Let 𝑇𝑦 ⊂ 𝑀 be an open set containing 𝑦 ∈ 𝑀 such that the 

operator  

 

 ℒ:= ∑𝑁𝑖=1 𝑋𝑖
2 

 

has a fundamental solution in 𝑇𝑦, that is, there exists a function 𝛤𝑦 ∈ 𝐶
2(𝑇𝑦\{𝑦}) 

such that  

 

 −ℒ𝛤𝑦 = 𝛿𝑦  𝑖𝑛  𝑇𝑦, (5.6) 

 

where 𝛿𝑦 is the Dirac 𝛿-distribution at 𝑦.  
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We will say that an admissible domain Ω is a strongly admissible domain 

with 𝑦 ∈ 𝑀 if the above assumption is satisfied, Ω ⊂ 𝑇𝑦, and (5.5) holds for 𝑓𝑘 =

𝑣𝑋𝑘Γ𝑦 for all 𝑣 ∈ 𝐶1(Ω) ∩ 𝐶(Ω). 

Note that the fundamental solution for sums of squares of vector fields 

satisfying Hörmander's condition was obtained by Sánchez-Calle in [75]. 

Let us recall several important examples from [31] which satisfy the above 

condition:   

E x a m p l e  1  Let 𝑀 be a stratified group with 𝑛 ≥ 3, and let {𝑋𝑘}𝑘=1
𝑁  be 

the left-invariant vector fields giving the first stratum of 𝑀. Then any open bounded 

set Ω ⊂ 𝑀 with a piecewise smooth simple boundary is strongly admissible.  

E x a m p l e  2  Let 𝑀 ≡ ℝ𝑛 with 𝑛 ≥ 3, and let the vector fields 𝑋𝑘 with 

𝑘 = 1,… ,𝑁, 𝑁 ≤ 𝑛, have the following form  

 

 𝑋𝑘: =
𝜕

𝜕𝑥𝑘
+ ∑𝑛𝑚=𝑁+1 𝑎𝑘,𝑚(𝑥)

𝜕

𝜕𝑥𝑚
, (5.7) 

 

where 𝑎𝑘,𝑚(𝑥) are locally 𝐶1,𝛼-regular for some 0 < 𝛼 ≤ 1, where 𝐶1,𝛼  stands 

for the space of functions with 𝑋𝑘-derivative in the Hölder space 𝐶𝛼 with respect ot 

the control distance defined by these vector fields. Assume that 

  

 
𝜕

𝜕𝑥𝑘
= ∑1≤𝑖>𝑗≤𝑁 𝜆

𝑖,𝑗(𝑥)[𝑋𝑖 , 𝑋𝑗] 

 

for all 𝑘 = 𝑁 + 1,… , 𝑛 with 𝜆𝑘
𝑖,𝑗
∈ 𝐿𝑙𝑜𝑐

∞ (𝑀). Then any open bounded set Ω ⊂ 𝑀 ≡
ℝ𝑛 with a piecewise smooth simple boundary is strongly admissible.  

E x a m p l e  3  More generally, let 𝑀 ≡ ℝ𝑛 with 𝑛 ≥ 3. Let the vector fields 

𝑋𝑘 for 𝑘 = 1,… , 𝑁, 𝑁 ≤ 𝑛, satisfy the Hörmander commutator condition of step 

𝑟 ≥ 2. Assume that all the vector fields 𝑋𝑘 for 𝑘 = 1,… , 𝑁 belong to 𝐶𝑟,𝛼(𝑈) for 

some 0 < 𝛼 ≤ 1 and 𝑈 ⊂ 𝑀 ≡ ℝ𝑛, and if 𝑟 = 2, then we assume 𝛼 = 1. Then if 

𝑋𝑘 's are in the form (7), then any open bounded set Ω ⊂ 𝑀 ≡ ℝ𝑛 with a piecewise 

smooth simple boundary is strongly admissible.  

Moreover, let us recall the following analogue of Green's formulae.  

P r o p o s i t i o n  5 . 1 . 1  [Green's formulae] Let 𝛺 ⊂ 𝑀  be an admissible 

domain. Let 𝑢 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺)  and 𝑣 ∈ 𝐶1(𝛺) ∩ 𝐶(𝛺) , then we have the 

following analogue of Green's first formula  

 

 ∫
𝔾
((�̃�𝑣)𝑢 + 𝑣ℒ𝑢)𝑑𝑥 = ∫

𝜕𝛺
𝑣〈�̃�𝑢, 𝑑𝑥〉, (5.8) 

 

where  

 

 �̃�𝑢 = ∑𝑁𝑖=1 (𝑋𝑖𝑢)𝑋𝑖 . (5.9) 

 

If 𝑢, 𝑣 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺), then we have the following analogue of Green's second 
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formula 

  

 ∫
𝛺
(𝑢ℒ𝑣 − 𝑣ℒ𝑢)𝑑𝑥 = ∫

𝜕𝛺
(𝑢〈�̃�𝑣, 𝑑𝑥〉 − 𝑣〈�̃�𝑢, 𝑑𝑥〉). (5.10) 

   

First, we present the anisotropic Picone type identity for vector fields.   

L e m m a  5 . 1 . 2  Let 𝛺 ⊂ 𝑀 be an open set. Let 𝑢, 𝑣 be differentiable a.e. in 

𝛺, 𝑣 > 0 a.e. in 𝛺 and 𝑢 ≥ 0. Define  

 

 𝑅(𝑢, 𝑣):= ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑋𝑖 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣, (5.11) 

 

 𝐿(𝑢, 𝑣):= ∑𝑁𝑖=1 |𝑋𝑖𝑢|
𝑝𝑖 − ∑𝑁𝑖=1 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣𝑋𝑖𝑢 

 +∑𝑁𝑖=1 (𝑝𝑖 − 1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖𝑣|

𝑝𝑖 , (5.12) 

 

where 𝑝𝑖 > 1, 𝑖 = 1,… ,𝑁. Then  

 

 𝐿(𝑢, 𝑣) = 𝑅(𝑢, 𝑣) ≥ 0. (5.13) 

 

In addition, we have 𝐿(𝑢, 𝑣) = 0 a.e. in 𝛺 if and only if 𝑢 = 𝑐𝑣 a.e. in 𝛺 with a 

positive constant 𝑐.    

P r o o f  o f  L e m m a  5 . 1 . 2 .  First, we show the equality in (5.13) by a direct 

computation as follows  

 

𝑅(𝑢, 𝑣) =∑

𝑁

𝑖=1

|𝑋𝑖𝑢|
𝑝𝑖 −∑

𝑁

𝑖=1

𝑋𝑖 (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣 

=∑

𝑁

𝑖=1

|𝑋𝑖𝑢|
𝑝𝑖 −∑

𝑁

𝑖=1

𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣𝑋𝑖𝑢 +∑

𝑁

𝑖=1

(𝑝𝑖 − 1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖𝑣|

𝑝𝑖 

= 𝐿(𝑢, 𝑣). 
 

Now we rewrite 𝐿(𝑢, 𝑣) to see 𝐿(𝑢, 𝑣) ≥ 0, that is,  

 

𝐿(𝑢, 𝑣) =∑

𝑁

𝑖=1

|𝑋𝑖𝑢|
𝑝𝑖 −∑

𝑁

𝑖=1

𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−1|𝑋𝑖𝑢| +∑

𝑁

𝑖=1

(𝑝𝑖 − 1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖𝑣|

𝑝𝑖 

+∑

𝑁

𝑖=1

𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2(|𝑋𝑖𝑣||𝑋𝑖𝑢| − 𝑋𝑖𝑣𝑋𝑖𝑢) 

= 𝑆1 + 𝑆2, 
 

where we denote 𝑆1 and 𝑆2 in the following form  
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𝑆1: = ∑

𝑁

𝑖=1

𝑝𝑖 [
1

𝑝𝑖
|𝑋𝑖𝑢|

𝑝𝑖 +
𝑝𝑖 − 1

𝑝𝑖
((
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1

)

𝑝𝑖
𝑝𝑖−1

] 

−∑

𝑁

𝑖=1

𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−1|𝑋𝑖𝑢|, 

 

and  

 

𝑆2: = ∑

𝑁

𝑖=1

𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
|𝑋𝑖𝑣|

𝑝𝑖−2(|𝑋𝑖𝑣||𝑋𝑖𝑢| − 𝑋𝑖𝑣𝑋𝑖𝑢). 

 

Since |𝑋𝑖𝑣||𝑋𝑖𝑢| ≥ 𝑋𝑖𝑣𝑋𝑖𝑢 we have 𝑆2 ≥ 0. To check that 𝑆1 ≥ 0 we will use 

Young's inequality for 𝑎 ≥ 0 and 𝑏 ≥ 0 stating that  

 

 𝑎𝑏 ≤
𝑎𝑝𝑖

𝑝𝑖
+
𝑏𝑞𝑖

𝑞𝑖
, (5.14) 

 

where 𝑝𝑖 > 1, 𝑞𝑖 > 1, and 
1

𝑝𝑖
+

1

𝑞𝑖
= 1 for 𝑖 = 1,… ,𝑁. The equality in (5.14) holds 

if and only if 𝑎𝑝𝑖 = 𝑏𝑞𝑖 , i.e. if 𝑎 = 𝑏
1

𝑝𝑖−1 . By setting 𝑎 = |𝑋𝑖𝑢|  and 𝑏 =

(
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1
 in (5.14), we get  

 

 𝑝𝑖|𝑋𝑖𝑢| (
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1
≤ 𝑝𝑖 [

1

𝑝𝑖
|𝑋𝑖𝑢|

𝑝𝑖 +
𝑝𝑖−1

𝑝𝑖
((
𝑢

𝑣
|𝑋𝑖𝑣|)

𝑝𝑖−1

)

𝑝𝑖
𝑝𝑖−1

]. (5.15) 

 

This yields 𝑆1 ≥ 0 which proves that 𝐿(𝑢, 𝑣) = 𝑆1 + 𝑆2 ≥ 0. It is easy to check that 

𝑢 = 𝑐𝑣 implies 𝑅(𝑢, 𝑣) = 0. Now let us show that 𝐿(𝑢, 𝑣) = 0 implies 𝑢 = 𝑐𝑣. 

Due to 𝑢(𝑥) ≥ 0 and 𝐿(𝑢, 𝑣)(𝑥0) = 0, 𝑥0 ∈ Ω, we consider the two cases 𝑢(𝑥0) >
0 and 𝑢(𝑥0) = 0. For the case 𝑢(𝑥0) > 0 we conclude from 𝐿(𝑢, 𝑣)(𝑥0) = 0 that 

𝑆1 = 0 and 𝑆2 = 0. Then 𝑆1 = 0 implies 

  

 |𝑋𝑖𝑢| =
𝑢

𝑣
|𝑋𝑖𝑣|,    𝑖 = 1,… ,𝑁, (5.16) 

 

and 𝑆2 = 0 implies  

 

 |𝑋𝑖𝑣||𝑋𝑖𝑢| − 𝑋𝑖𝑣𝑋𝑖𝑢 = 0,    𝑖 = 1,… , 𝑁. (5.17) 

 

The combination of (5.16) and (5.17) gives  

 

 
𝑋𝑖𝑢

𝑋𝑖𝑣
=
𝑢

𝑣
= 𝑐,    with    𝑐 ≠ 0,    𝑖 = 1,… ,𝑁. (5.18) 
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Let us denote Ω∗: = {𝑥 ∈ Ω|𝑢(𝑥) = 0}. If Ω∗ ≠ Ω, then suppose that 𝑥0 ∈
𝜕Ω∗ . Then there exists a sequence 𝑥𝑘 ∉ Ω

∗  such that 𝑥𝑘 → 𝑥0 . In particular, 

𝑢(𝑥𝑘) ≠ 0, and hence by the first case we have 𝑢(𝑥𝑘) = 𝑐𝑣(𝑥𝑘). Passing to the limit 

we get 𝑢(𝑥0) = 𝑐𝑣(𝑥0). Since 𝑢(𝑥0) = 0 and 𝑣(𝑥0) ≠ 0, we get that 𝑐 = 0. But 

then by the first case again, since 𝑢 = 𝑐𝑣 and 𝑢 ≠ 0 in Ω\Ω∗, it is impossible that 

𝑐 = 0 . This contradiction implies that Ω∗ = Ω . The proof of Lemma 5.1.2 is 

complete.  

Now we are ready to obtain the weighted anisotropic Hardy type inequalities 

for general vector fields by using the anisotropic Picone type identity.   

T h e o r e m  5 . 1 . 3  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝑊𝑖(𝑥) ≥ 0 and 

𝐻𝑖(𝑥) ≥ 0 be functions with 𝑖 = 1,… ,𝑁, such that for a function 𝑣 ∈ 𝐶1(𝛺) ∩

𝐶(𝛺) and 𝑣 > 0 a.e. in 𝛺, we have  

 

 −𝑋𝑖(𝑊𝑖(𝑥)|𝑋𝑖𝑣|
𝑝𝑖−2𝑋𝑖𝑣) ≥ 𝐻𝑖(𝑥)𝑣

𝑝𝑖−1,    𝑖 = 1,… ,𝑁. (5.19) 

 

Then, for all functions 0 ≤ 𝑢 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺)  and the positive function 𝑣 ∈

𝐶1(𝛺) ∩ 𝐶(𝛺) satisfying (19), we get  

 

 ∑𝑁𝑖=1 ∫𝛺 𝑊𝑖(𝑥)|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 ≥ ∑𝑁𝑖=1 ∫𝛺 𝐻𝑖(𝑥)|𝑢|

𝑝𝑖𝑑𝑥 (5.20) 

 +∑𝑁𝑖=1 ∫𝜕𝛺
𝑢𝑝𝑖

𝑣𝑝𝑖−1
〈�̃�𝑖(𝑊𝑖(𝑥)|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣), 𝑑𝑥〉, 

 

where �̃�𝑖𝑓 = 𝑋𝑖𝑓𝑋𝑖 and 𝑝𝑖 > 1, for 𝑖 = 1,… ,𝑁.  

R e m a r k  5 . 1 . 4  Note that if 𝑢 vanishes on the boundary 𝜕Ω and 𝑝𝑖 = 𝑝, 

then we have the weighted Hardy type inequalities for general vector fields  

 

 ∫
Ω
𝑊(𝑥)|∇𝑋𝑢|

𝑝𝑑𝑥 ≥ ∫
Ω
𝐻(𝑥)|𝑢|𝑝𝑑𝑥, (5.21) 

 

where ∇𝑋: = (𝑋1, … , 𝑋𝑁). 
P r o o f  o f  T h e o r e m  5 . 1 . 3 .  Let us give a brief outline of the following 

proof. We start by using the property of the anisotropic Picone type identity (5.13), 

then we apply the divergence theorem and the hypothesis (5.19), respectively. At the 

end, we arrive at (5.20). Thus, we have  

 

 0 ≤ ∫
Ω
∑𝑁𝑖=1 𝑊𝑖(𝑥)𝐿(𝑢, 𝑣)𝑑𝑥 = ∫Ω ∑

𝑁
𝑖=1 𝑊𝑖(𝑥)𝑅(𝑢, 𝑣)𝑑𝑥 

 = ∑𝑁𝑖=1 ∫Ω 𝑊𝑖(𝑥)|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 ∫Ω 𝑋𝑖 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
)𝑊𝑖(𝑥)|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣𝑑𝑥 

 = ∑𝑁𝑖=1 ∫Ω 𝑊𝑖(𝑥)|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 + ∑𝑁𝑖=1 ∫Ω

𝑢𝑝𝑖

𝑣𝑝𝑖−1
𝑋𝑖(𝑊𝑖(𝑥)|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣)𝑑𝑥 

 −∑𝑁𝑖=1 ∫𝜕Ω
𝑢𝑝𝑖

𝑣𝑝𝑖−1
〈∇̃𝑖(𝑊𝑖(𝑥)|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣), 𝑑𝑥〉 

 ≤ ∑𝑁𝑖=1 ∫Ω 𝑊𝑖(𝑥)|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 − ∑𝑁𝑖=1 ∫Ω 𝐻𝑖(𝑥)𝑢

𝑝𝑖𝑑𝑥 

 −∑𝑁𝑖=1 ∫𝜕Ω
𝑢𝑝𝑖

𝑣𝑝𝑖−1
〈∇̃𝑖(𝑊𝑖(𝑥)|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣), 𝑑𝑥〉, 
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where ∇̃𝑖𝑓 = 𝑋𝑖𝑓𝑋𝑖. This completes the proof of Theorem 5.1.3.  

Now we present some concrete examples of the weighted anisotropic Hardy 

type inequalities (5.20). 

Note that examples of the weighted anisotropic Hardy type inequalities on 𝑀 

will be expressed in terms of the fundamental solution Γ = Γ𝑦(𝑥)  in the 

assumption. For brevity, we can just write it as Γ, if we fix some 𝑦 ∈ 𝑀 and the 

corresponding 𝑇𝑦 and Γ𝑦. 

C o r o l l a r y  5 . 1 . 5  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛼 ∈ ℝ, 1 <
𝑝𝑖 < 𝛽 + 𝛼, 𝑖 = 1,… , 𝑁, and 𝛾 > −1, 𝛽 > 2. Then for all 𝑢 ∈ 𝐶0

∞(𝛺\{0}) we have  

 

∑𝑁𝑖=1 ∫𝛺 𝛤
𝛼

2−𝛽|𝑋𝑖𝛤
1

2−𝛽|𝛾|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 ≥

∑𝑁𝑖=1 (
𝛽+𝛼−𝑝𝑖

𝑝𝑖
)
𝑝𝑖
∫
𝛺
𝛤
𝛼−𝑝𝑖
2−𝛽 |𝑋𝑖𝛤

1

2−𝛽|𝑝𝑖+𝛾|𝑢|𝑝𝑖𝑑𝑥. (5.22) 

Note that (5.22) is an analogue of the result of Wang and Niu [73], now for 

general vector fields.   

R e m a r k  5 . 1 . 6  By taking 𝛾 = 0  and 𝑝𝑖 = 2  we have the following 

inequality  

 

 ∫
Ω
Γ

𝛼

2−𝛽|∇𝑋𝑢|
2𝑑𝑥 ≥ ∑𝑁𝑖=1 (

𝛽+𝛼−2

2
)
2

∫
Ω
Γ
𝛼−2

2−𝛽|∇𝑋Γ
1

2−𝛽|2|𝑢|2𝑑𝑥, (5.23) 

 

for all 𝑢 ∈ 𝐶0
∞(Ω) and where ∇𝑋= (𝑋1, … , 𝑋𝑁). 

P r o o f  o f  C o r o l l a r y  5 . 1 . 5 . Consider the functions 𝑊𝑖 and 𝑣 such that  

 

 𝑊𝑖 = 𝑑
𝛼|𝑋𝑖𝑑|

𝛾  and  𝑣 = Γ
𝜓

2−𝛽 = 𝑑𝜓, (5.24) 

 

where we denote 𝑑 = Γ
1

2−𝛽  and 𝜓 = −(
𝛽+𝛼−𝑝𝑖

𝑝𝑖
)  for simplicity. Now we plug 

(5.24) in (5.19) to calculate the function 𝐻𝑖. Before we need to have the following 

computations  

 

 𝑋𝑖𝑣 = 𝜓𝑑
𝜓−1𝑋𝑖𝑑, 

 |𝑋𝑖𝑣|
𝑝𝑖−2 = |𝜓|𝑝𝑖−2𝑑(𝜓−1)(𝑝𝑖−2)|𝑋𝑖𝑑|

𝑝𝑖−2, 
 𝑊𝑖|𝑋𝑖𝑣|

𝑝𝑖−2𝑋𝑖𝑣 = |𝜓|
𝑝𝑖−2𝜓𝑑𝛼+(𝜓−1)(𝑝𝑖−1)|𝑋𝑖𝑑|

𝛾+𝑝𝑖−2𝑋𝑖𝑑. 
 

Also, we get  

 

 ∑𝑁𝑖=1 𝑋𝑖
2𝑑𝛼 = ∑𝑁𝑖=1 𝑋𝑖(𝑋𝑖Γ

𝛼

2−𝛽) = ∑𝑁𝑖=1 𝑋𝑖 (
𝛼

2−𝛽
Γ
𝛼+𝛽−2

2−𝛽 𝑋𝑖Γ) 

 =
𝛼(𝛼+𝛽−2)

(2−𝛽)2
Γ
𝛼+2𝛽−4

2−𝛽 ∑𝑁𝑖=1 |𝑋𝑖Γ|
2 +

𝛼

2−𝛽
Γ
𝛼+𝛽−2

2−𝛽 ∑𝑁𝑖=1 𝑋𝑖
2Γ 

 =
𝛼(𝛼+𝛽−2)

(2−𝛽)2
𝑑𝛼+2𝛽−4∑𝑁𝑖=1 |𝑋𝑖𝑑

2−𝛽|2 
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 = 𝛼(𝛼 + 𝛽 − 2)𝑑𝛼−2 ∑𝑁𝑖=1 |𝑋𝑖𝑑|
2. (5.25) 

 

We observe that ∑𝑁𝑖=1 𝑋𝑖
2Γ = 0, since Γ = Γ𝑦  is the fundamental solution to ℒ. 

Also, we have  

 

 𝑋𝑖|𝑋𝑖𝑑|
𝛾 = 𝑋𝑖((𝑋𝑖𝑑)

2)
𝛾

2 

 = 𝛾|𝑋𝑖𝑑|
𝛾−2𝑋𝑖𝑑𝑋𝑖

2𝑑 

 = 𝛾(𝛽 − 1)𝑑−1|𝑋𝑖𝑑|
𝛾𝑋𝑖𝑑. (5.26) 

 

In the last line, we have used (25) with 𝛼 = 1. Using (5.25) and (5.26) we compute  

 

 𝑋𝑖(𝑊𝑖|𝑋𝑖𝑣|
𝑝𝑖−2𝑋𝑖𝑣) = |𝜓|

𝑝𝑖−2𝜓𝑋𝑖(  𝑑
𝛼+(𝜓−1)(𝑝𝑖−1)|𝑋𝑖𝑑|

𝛾+𝑝𝑖−2𝑋𝑖𝑑) 

 = |𝜓|𝑝𝑖−2𝜓((𝛼 + (𝜓 − 1)(𝑝𝑖 − 1))𝑑
𝛼+(𝜓−1)(𝑝𝑖−1)−1|𝑋𝑖𝑑|

𝛾+𝑝𝑖) 

 +|𝜓|𝑝𝑖−2𝜓((𝛾 + 𝑝𝑖 − 2)(𝛽 − 1)𝑑
𝛼+(𝜓−1)(𝑝𝑖−1)−1|𝑋𝑖𝑑|

𝛾+𝑝𝑖) 

 +|𝜓|𝑝𝑖−2𝜓((𝛽 − 1)𝑑𝛼+(𝜓−1)(𝑝𝑖−1)−1|𝑋𝑖𝑑|
𝛾+𝑝𝑖) 

 = |𝜓|𝑝𝑖−2𝜓(−𝜓 + (𝛾 + 𝑝𝑖 − 2)(𝛽 − 1))𝑑
𝛼−𝑝𝑖+𝜓(𝑝𝑖−1)|𝑋𝑖𝑑|

𝛾+𝑝𝑖  

 = −|𝜓|𝑝𝑖𝑑𝛼−𝑝𝑖|𝑋𝑖𝑑|
𝛾+𝑝𝑖𝑣𝑝𝑖−1 

 +|𝜓|𝑝𝑖−2𝜓(𝛾 + 𝑝𝑖 − 2)(𝛽 − 1)𝑑
𝛼−𝑝𝑖|𝑋𝑖𝑑|

𝛾+𝑝𝑖𝑣𝑝𝑖−1. 
 

 Now we put back the value of 𝜓, then we get  

 

 −𝑋𝑖(𝑊𝑖|𝑋𝑖𝑣|
𝑝𝑖−2𝑋𝑖𝑣) = |

𝛽+𝛼−𝑝𝑖

𝑝𝑖
|
𝑝𝑖
𝑑𝛼−𝑝𝑖|𝑋𝑖𝑑|

𝛾+𝑝𝑖𝑣𝑝𝑖−1 

 + |
𝛽+𝛼−𝑝𝑖

𝑝𝑖
|
𝑝𝑖−2

(
𝛽+𝛼−𝑝𝑖

𝑝𝑖
) (𝛾 + 𝑝𝑖 − 2)(𝛽 − 1)𝑑

𝛼−𝑝𝑖|𝑋𝑖𝑑|
𝛾+𝑝𝑖𝑣𝑝𝑖−1 

 ≥ |
𝛽+𝛼−𝑝𝑖

𝑝𝑖
|
𝑝𝑖
𝑑𝛼−𝑝𝑖|𝑋𝑖𝑑|

𝛾+𝑝𝑖𝑣𝑝𝑖−1 

 ≥ 𝐻𝑖(𝑥)𝑣
𝑝𝑖−1. 

 

So we have satisfied the hypothesis, then we plug the values of functions 𝑊𝑖 and  

 

 𝐻𝑖 = |
𝛽+𝛼−𝑝𝑖

𝑝𝑖
|
𝑝𝑖
Γ
𝛼−𝑝𝑖
2−𝛽 |𝑋𝑖Γ

1

2−𝛽|𝛾+𝑝𝑖 , 

 

in (5.20), which completes the proof.  

C o r o l l a r y  5 . 1 . 7  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛼, 𝛾 ∈ ℝ and 

𝛼 ≠ 0, 𝛽 > 2. Then for any 𝑢 ∈ 𝐶0
1(𝛺) we have  

 

∑𝑁𝑖=1 ∫𝛺 𝛤
𝛾+𝑝𝑖
2−𝛽 |𝑋𝑖𝑢|

𝑝𝑖𝑑𝑥 ≥ ∑𝑁𝑖=1 𝐶𝑖(𝛼, 𝛾, 𝑝𝑖)
𝑝𝑖 ∫

𝛺
𝛤

𝛾

2−𝛽|𝑋𝑖𝛤
1

2−𝛽|𝑝𝑖|𝑢|𝑝𝑖𝑑𝑥, (5.27) 

 

where 𝐶𝑖(𝛼, 𝛾, 𝑝𝑖): =
(𝛼−1)(𝑝𝑖−1)−𝛾−1

𝑝𝑖
, 𝑝𝑖 > 1, and 𝑖 = 1,… ,𝑁.   

Note that we recover the result of D'Ambrosio in [74, Theorem 2.7]. Corollary 
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5.1.7 is proved with the same approach as the previous case by considering the 

functions  

 

 𝑊𝑖 = Γ
𝛾+𝑝𝑖
2−𝛽   and  𝑣 = Γ

−
(𝛼−1)(𝑝𝑖−1)−𝛾−1

(2−𝛽)𝑝𝑖 . 
 

C o r o l l a r y  5 . 1 . 8  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛼 ∈ ℝ, 𝛽 > 2, 
1 < 𝑝𝑖 < 𝛽 + 𝛼 for 𝑖 = 1,… ,𝑁. Then for all 𝑢 ∈ 𝐶0

∞(𝛺) we have  

 

∑𝑁𝑖=1 ∫𝛺 𝛤
𝛼

2−𝛽|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 ≥ ∑𝑁𝑖=1 𝐶𝑖(𝛽, 𝛼, 𝑝𝑖) ∫𝛺 𝛤

𝛼

2−𝛽
|𝑋𝑖𝛤

1
2−𝛽|𝑝𝑖

(1+𝛤

𝑝𝑖
(𝑝𝑖−1)(2−𝛽))

𝑝𝑖
|𝑢|𝑝𝑖𝑑𝑥, (5.28) 

where 𝐶𝑖(𝛽, 𝛼, 𝑝𝑖): = (
𝛽+𝛼−𝑝𝑖

𝑝𝑖−1
)
𝑝𝑖−1

(𝛽 + 𝛼).   

Note that a Carnot group version of inequality (5.28) was established by 

Goldstein, Kombe and Yener in [71, P. 2015-2016]. Corollary 5.1.8 is proved with 

the same approach as the previous cases by considering the functions  

 

 𝑊𝑖 = Γ
𝛼

2−𝛽  and  𝑣 = (1 + Γ
𝑝𝑖

(𝑝𝑖−1)(2−𝛽))
−
𝛽+𝛼−𝑝𝑖
𝑝𝑖

. 

 

C o r o l l a r y  5 . 1 . 9  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛼 ∈ ℝ, 𝛽 > 2, 
1 < 𝑝𝑖 < 𝛽 + 𝛼 for 𝑖 = 1,… ,𝑁. Then for all 𝑢 ∈ 𝐶0

∞(𝛺) we have 

 

∑𝑁𝑖=1 ∫𝛺 (1 + 𝛤
𝑝𝑖

(𝑝𝑖−1)(2−𝛽))
𝛼(𝑝𝑖−1)

|𝑋𝑖𝑢|
𝑝𝑖𝑑𝑥 (5.29) 

≥∑

𝑁

𝑖=1

𝐶𝑖(𝛽, 𝑝𝑖 , 𝛼)∫
𝛺

|𝑋𝑖𝛤
1
2−𝛽|𝑝𝑖

(1 + 𝛤
𝑝𝑖

(𝑝𝑖−1)(2−𝛽))
(1−𝑝𝑖)(1−𝛼)

|𝑢|𝑝𝑖𝑑𝑥. 

 

where 𝐶𝑖(𝛽, 𝑝𝑖 , 𝛼): = 𝛽 (
𝑝𝑖(𝛼−1)

𝑝𝑖−1
)
𝑝𝑖−1

.  

Note that Carnot and Euclidean versions of inequality (5.29) were established 

in [71, P. 2015-2016] and [76], respectively. Corollary 5.1.9 is proved with the same 

approach as the previous case by considering the functions 

 

 𝑊𝑖 = (1 + Γ
𝑝𝑖

(𝑝𝑖−1)(2−𝛽))
𝛼(𝑝𝑖−1)

  and  𝑣 = (1 + Γ
𝑝𝑖

(𝑝𝑖−1)(2−𝛽))
1−𝛼

. 

 

C o r o l l a r y  5 . 1 . 1 0  Let 𝛺 ⊂ 𝑀  be an admissible domain. Let 𝛽 > 2 , 

𝑎, 𝑏 > 0 and 𝛼, 𝛾,𝑚 ∈ ℝ. If 𝛼𝛾 > 0 and 𝑚 ≤
𝛽−2

2
. Then for all 𝑢 ∈ 𝐶0

∞(𝛺) we 

have  
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 ∫
𝛺

(𝑎+𝑏𝛤
𝛼
2−𝛽)𝛾

𝛤
2𝑚
2−𝛽

|𝛻𝑋𝑢|
2𝑑𝑥 ≥ 𝐶(𝛽,𝑚)2 ∫

𝛺

(𝑎+𝑏𝛤
𝛼
2−𝛽)𝛾

𝛤
2𝑚+2
2−𝛽

|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥 

 +𝐶(𝛽,𝑚)𝛼𝛾𝑏 ∫
𝛺

(𝑎+𝑏𝛤
𝛼
2−𝛽)𝛾−1

𝛤
2𝑚−𝛼+2
2−𝛽

|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥, (5.30) 

 

where 𝐶(𝛽,𝑚):=
𝛽−2𝑚−2

2
 and 𝛻𝑋 = (𝑋1, … , 𝑋𝑁).   

Note that Carnot and Euclidean version of inequality (5.30) were established in 

[71, P. 2015-2017] and [77], respectively. Corollary 5.1.10 can be proved with the 

same approach for 𝑝𝑖 = 2, 𝑖 = 1,… ,𝑁, as the previous cases by considering the 

functions  

 

 𝑊 =
(𝑎+𝑏Γ

𝛼
2−𝛽)𝛾

Γ
2𝑚
2−𝛽

  and  𝑣 = Γ
−
𝛽−2𝑚−2

2(2−𝛽) . 

  

Theorem 5.1.3 also implies the following uncertainty principles:   

C o r o l l a r y  5 . 1 . 1 1  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛽 > 2. Then 

for all 𝑢 ∈ 𝐶0
∞(𝛺) we have  

 

 
𝛽2

4
(∫
𝛺
|𝑢|2𝑑𝑥)

2
≤ (∫

𝛺
|𝛻𝑋𝛤

1

2−𝛽|−2|𝛻𝑋𝑢|
2𝑑𝑥) (∫

𝛺
𝛤

2

2−𝛽|𝑢|2𝑑𝑥). (5.31) 

 

P r o o f  o f  C o r o l l a r y  5 . 1 . 1 1 .  In Theorem 5.1.3, by letting  

 

 𝑊(𝑥) = |∇𝑋Γ
1

2−𝛽|−2  and  𝑣 = 𝑒−𝛼Γ
2
2−𝛽
, 

 

where 𝛼 ∈ ℝ, we arrive at  

 

−4𝛼2∫
Ω

Γ
2
2−𝛽|𝑢|2𝑑𝑥 + 2𝛼𝛽∫

Ω

|𝑢|2𝑑𝑥 − ∫
Ω

|∇𝑋Γ
1
2−𝛽|−2|∇𝑋𝑢|

2𝑑𝑥 ≤ 0. 

 

It can be noted that above inequality has the form 𝑎𝛼2 + 𝑏𝛼 + 𝑐 ≤ 0 if we denote 

by  

 

 𝑎:= −4∫
Ω
Γ

2

2−𝛽|𝑢|2𝑑𝑥, 

 

 𝑏:= 2𝛽 ∫
Ω
|𝑢|2𝑑𝑥, 

 

and  
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 𝑐: = −∫
Ω
|∇𝑋Γ

1

2−𝛽|−2|∇𝑋𝑢|
2𝑑𝑥. 

 

Thus, we have 𝑏2 − 4𝑎𝑐 ≤ 0 which proves Corollary 5.1.11.  

C o r o l l a r y  5 . 1 . 1 2  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛽 > 2. Then 

for all 𝑢 ∈ 𝐶0
∞(𝛺) we have  

 

(∫
𝛺
|𝛻𝑋𝑢|

2𝑑𝑥) (∫
𝛺
𝛤

2

2−𝛽|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥) ≥
𝛽2

4
(∫
𝛺
|𝛻𝑋𝛤

1

2−𝛽|2|𝑢|2𝑑𝑥)
2

.(5.32) 

P r o o f  o f  C o r o l l a r y  5 . 1 . 1 2 .  Setting 

  

 𝑊 = 1  and  𝑣 = 𝑒−𝛼Γ
2
2−𝛽
, 

 

where 𝛼 ∈ ℝ, we have  

 

∫
Ω
|∇𝑋𝑢|

2𝑑𝑥 ≥ 2𝛼𝛽 ∫
Ω
|∇𝑋Γ

1

2−𝛽|2|𝑢|2𝑑𝑥 − 4𝛼2 ∫
Ω
Γ

2

2−𝛽|∇𝑋Γ
1

2−𝛽|2|𝑢|2𝑑𝑥. 

 

Using the same technique as before we prove Corollary 5.1.12.  

C o r o l l a r y  5 . 1 . 1 3  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛽 > 2. Then 

for all 𝑢 ∈ 𝐶0
∞(𝛺) we have  

 

 (∫
𝛺
|𝛻𝑋𝑢|

2𝑑𝑥) (∫
𝛺
𝛤

2

2−𝛽|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥) (5.33) 

 ≥
(𝛽−1)2

4
(∫
𝛺
𝛤
−

1

2−𝛽|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥)
2

. 

 

We can prove it with the same approach by considering the following pair  

 

 𝑊 = 1  and  𝑣 = 𝑒−𝛼Γ
1
2−𝛽
. 

 

5.2  Weighted anisotropic Rellich type inequality 

In this section, we now present the anisotropic (second order) Picone type 

identity. As a byproduct, we obtain the weighted anisotropic Rellich type inequalities 

for the general vector fields.  

L e m m a  5 . 2 . 1  Let 𝛺 ⊂ 𝔾 be an open set. Let 𝑢, 𝑣 be twice differentiable 

a.e. in 𝛺 and satisfying the following conditions: 𝑢 ≥ 0, 𝑣 > 0, 𝑋𝑖
2𝑣 < 0 a.e. in 

𝛺. Let 𝑝𝑖 > 1, 𝑖 = 1,… , 𝑁. Then we have  

 

 𝐿1(𝑢, 𝑣) = 𝑅1(𝑢, 𝑣) ≥ 0, (5.34) 

 

where  
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𝑅1(𝑢, 𝑣):=∑

𝑁

𝑖=1

|𝑋𝑖
2𝑢|𝑝𝑖 −∑

𝑁

𝑖=1

𝑋𝑖
2 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) |𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣, 

 

and  

 

𝐿1(𝑢, 𝑣):=∑

𝑁

𝑖=1

|𝑋𝑖
2𝑢|𝑝𝑖 −∑

𝑁

𝑖=1

𝑝𝑖 (
𝑢

𝑣
)
𝑝𝑖−1

𝑋𝑖
2𝑢𝑋𝑖

2𝑣|𝑋𝑖
2𝑣|𝑝𝑖−2 

+∑

𝑁

𝑖=1

(𝑝𝑖 − 1) (
𝑢

𝑣
)
𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖  

−∑

𝑁

𝑖=1

𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 (𝑋𝑖𝑢 −
𝑢

𝑣
𝑋𝑖𝑣)

2

. 

   

P r o o f  o f  L e m m a  5 . 1 . 2 .  A direct computation gives  

 

 𝑋𝑖
2 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
) = 𝑋𝑖 (𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖𝑢 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖𝑣) 

 = 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−2
(
(𝑋𝑖𝑢)𝑣−𝑢(𝑋𝑖𝑣)

𝑣2
)𝑋𝑖𝑢 + 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢 

 −𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
(
(𝑋𝑖𝑢)𝑣−𝑢(𝑋𝑖𝑣)

𝑣2
)𝑋𝑖𝑣 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖
2𝑣 

 = 𝑝𝑖(𝑝𝑖 − 1) (
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖𝑢|

2 − 2
𝑢𝑝𝑖−1

𝑣𝑝𝑖
𝑋𝑖𝑣𝑋𝑖𝑢 +

𝑢𝑝𝑖

𝑣𝑝𝑖+1
|𝑋𝑖𝑣|

2) 

 +𝑝𝑖
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖
2𝑣 

 = 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
(𝑋𝑖𝑢 −

𝑢

𝑣
𝑋𝑖𝑣)

2
+ 𝑝𝑖

𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢 − (𝑝𝑖 − 1)

𝑢𝑝𝑖

𝑣𝑝𝑖
𝑋𝑖
2𝑣, 

 

which gives the equality in (5.34). By Young's inequality we have  

 

 
𝑢𝑝𝑖−1

𝑣𝑝𝑖−1
𝑋𝑖
2𝑢𝑋𝑖

2𝑣|𝑋𝑖
2𝑣|𝑝𝑖−2 ≤

|𝑋𝑖
2𝑢|𝑝𝑖

𝑝𝑖
+

1

𝑞𝑖

𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖 ,    𝑖 = 1,… , 𝑁, 

 

where 𝑝𝑖 > 1 and 𝑞𝑖 > 1 with 
1

𝑝𝑖
+

1

𝑞𝑖
= 1. Since 𝑋𝑖

2𝑣 < 0, 𝑖 = 1,… , 𝑁, we arrive 

at  

𝐿1(𝑢, 𝑣) ≥∑

𝑁

𝑖=1

|𝑋𝑖
2𝑢|𝑝𝑖 +∑

𝑁

𝑖=1

(𝑝𝑖 − 1)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖

−∑

𝑁

𝑖=1

𝑝𝑖 (
|𝑋𝑖
2𝑢|𝑝𝑖

𝑝𝑖
+
1

𝑞𝑖

𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖) 

 −∑𝑁𝑖=1 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 |𝑋𝑖𝑢 −
𝑢

𝑣
𝑋𝑖𝑣|

2
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 = ∑𝑁𝑖=1 (𝑝𝑖 − 1 −
𝑝𝑖

𝑞𝑖
)
𝑢𝑝𝑖

𝑣𝑝𝑖
|𝑋𝑖
2𝑣|𝑝𝑖  

 −∑𝑁𝑖=1 𝑝𝑖(𝑝𝑖 − 1)
𝑢𝑝𝑖−2

𝑣𝑝𝑖−1
|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣 |𝑋𝑖𝑢 −
𝑢

𝑣
𝑋𝑖𝑣|

2
≥ 0. 

 

This completes the proof of Lemma 5.2.1.  

Now we are ready to prove the weighted anisotropic Rellich inequalities. 

T h e o r e m  5 . 2 . 2  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝑊𝑖(𝑥) ∈ 𝐶
2(𝛺) 

and 𝐻𝑖(𝑥) ∈ 𝐿𝑙𝑜𝑐
1 (𝛺) be the nonnegative weight functions. Let 𝑣 > 0, 𝑣 ∈ 𝐶2(𝛺) ∩

𝐶1(𝛺) with  

 

 𝑋𝑖
2(𝑊𝑖(𝑥)|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣) ≥ 𝐻𝑖(𝑥)𝑣

𝑝−1, −𝑋𝑖
2𝑣 > 0, (5.35) 

 

a.e. in 𝛺, for all 𝑖 = 1,… ,𝑁. Then for every 0 ≤ 𝑢 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺) we have the 

following inequality  

 

 ∑𝑁𝑖=1 ∫𝛺 𝐻𝑖(𝑥)|𝑢|
𝑝𝑖𝑑𝑥 ≤ ∑𝑁𝑖=1 ∫𝛺 𝑊𝑖(𝑥)|𝑋𝑖

2𝑢|𝑝𝑖𝑑𝑥 (5.36) 

 +∑𝑁𝑖=1 ∫𝜕𝛺 𝑊𝑖(𝑥)|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣〈�̃�𝑖 (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) , 𝑑𝑥〉 

 −∑𝑁𝑖=1 ∫𝜕𝛺 (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) 〈�̃�𝑖(𝑊𝑖(𝑥)|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣), 𝑑𝑥〉, 

 

where 1 < 𝑝𝑖 < 𝑁 for 𝑖 = 1,… ,𝑁, and �̃�𝑖𝑢 = 𝑋𝑖𝑢𝑋𝑖 .  

Note that a Carnot group version of Theorem 5.2.2 was obtained by Goldstein, 

Kombe and Yener in [78]. Moreover, it should be also noted that the function 𝑣 

from the assumption (5.35) appears in the boundary terms (5.36), which seems a new 

effect unlike known particular cases of Theorem 5.2.2.  

P r o o f  o f  T h e o r e m  5 . 2 . 2 .  Let us give a brief outline of the following 

proof as in Theorem 5.2.2. We start by using the property of the anisotropic (second 

order) Picone type identity (5.34), then we apply analogue of Green's second formula 

from Proposition 1 and the hypothesis (5.35), respectively. Finally, we arrive at 

(5.36) by using 𝐻𝑖(𝑥) ≥ 0. Thus, we have  

 

 0 ≤ ∫
Ω
𝑊𝑖(𝑥)𝐿1(𝑢, 𝑣)𝑑𝑥 = ∫Ω 𝑊𝑖(𝑥)𝑅1(𝑢, 𝑣)𝑑𝑥 

 = ∫
Ω
𝑊𝑖(𝑥)|𝑋𝑖

2𝑢|𝑝𝑖𝑑𝑥 − ∫
Ω
𝑋𝑖
2 (

𝑢𝑝𝑖

𝑣𝑝𝑖−1
)𝑊𝑖(𝑥)|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣𝑑𝑥 

 = ∫
Ω
𝑊𝑖(𝑥)|𝑋𝑖

2𝑢|𝑝𝑖𝑑𝑥 − ∫
Ω

𝑢𝑝𝑖

𝑣𝑝𝑖−1
𝑋𝑖
2(𝑊𝑖(𝑥)|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣)𝑑𝑥 

+∫
𝜕Ω

(𝑊𝑖(𝑥)|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣〈∇̃𝑖 (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) , 𝑑𝑥〉

− (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) 〈∇̃𝑖(𝑊𝑖(𝑥)|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣), 𝑑𝑥〉) 

 ≤ ∫
Ω
𝑊𝑖(𝑥)|𝑋𝑖

2𝑢|𝑝𝑖𝑑𝑥 − ∫
Ω
𝐻𝑖(𝑥)|𝑢|

𝑝𝑖𝑑𝑥 
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+∫
𝜕Ω

(𝑊𝑖(𝑥)|𝑋𝑖
2𝑣|𝑝𝑖−2𝑋𝑖

2𝑣〈∇̃𝑖 (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) , 𝑑𝑥〉

− (
𝑢𝑝𝑖

𝑣𝑝𝑖−1
) 〈∇̃𝑖(𝑊𝑖(𝑥)|𝑋𝑖

2𝑣|𝑝𝑖−2𝑋𝑖
2𝑣), 𝑑𝑥〉). 

 

In the last line, we have used (5.35) which leads to (5.36).  

Let us recall that the operator ℒ is the sum of squares of vector fields, defined 

by  

 ℒ:= ∑𝑁𝑖=1 𝑋𝑖
2. (5.37) 

  

C o r o l l a r y  5 . 2 . 3  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 𝛽 > 2, 𝛼 ∈
ℝ, 𝛽 + 𝛼 > 4 and 𝛽 > 𝛼. Then for all 𝑢 ∈ 𝐶0

∞(𝛺\{0}) we have  

 

 ∫
𝛺

𝛤
𝛼
2−𝛽

|𝛻𝑋𝛤
1
2−𝛽|2

|ℒ𝑢|2𝑑𝑥 ≥ 𝐶(𝛽, 𝛼) ∫
𝛺
𝛤
𝛼−4

2−𝛽|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|2𝑑𝑥, (5.38) 

 

where 𝐶(𝛽, 𝛼):=
(𝛽+𝛼−4)2(𝛽−𝛼)2

16
 is in general sharp.    

R e m a r k  5 . 2 . 4  Note that Kombe [68] proved the sharpness of the constant 

appearing above inequality for the Carnot groups.   

P r o o f  o f  C o r o l l a r y  5 . 2 . 3 .  Let us choose the function 𝑊(𝑥) and 𝑣 

such that  

 

 𝑊(𝑥) =
Γ
𝛼
2−𝛽

|𝑋𝑖Γ
1
2−𝛽|2

  and  𝑣 = Γ
𝛾

2−𝛽, (5.39) 

 

where 𝛾 = −
𝛽+𝛼−4

2
. As in the case of the Hardy inequality, we use the notation Γ =

𝑑2−𝛽 for simplicity, then we get  

 

 ∑𝑁𝑖=1 𝑋𝑖
2𝑑𝛾 = ∑𝑁𝑖=1 𝑋𝑖

2Γ
𝛾

2−𝛽 = ∑𝑁𝑖=1 𝑋𝑖 (
𝛾

2−𝛽
Γ
𝛾+𝛽−2

2−𝛽 𝑋𝑖Γ) 

 =
𝛾(𝛾+𝛽−2)

(2−𝛽)2
Γ
𝛾+2𝛽−4

2−𝛽 ∑𝑁𝑖=1 |𝑋𝑖Γ|
2 +

𝛾

2−𝛽
Γ
𝛾+𝛽−2

2−𝛽 ∑𝑁𝑖=1 𝑋𝑖
2Γ 

 =
𝛾(𝛾+𝛽−2)

(2−𝛽)2
𝑑𝛾+2𝛽−4∑𝑁𝑖=1 |𝑋𝑖𝑑

2−𝛽|2 

 = 𝛾(𝛾 + 𝛽 − 2)𝑑𝛾−2∑𝑁𝑖=1 |𝑋𝑖𝑑|
2. 

 

We observe that ∑𝑁𝑖=1 𝑋𝑖
2Γ = 0, since Γ = Γ𝑦  is the fundamental solution to ℒ. 

Now we can compute the function 𝐻(𝑥),  

 

 𝑋𝑖
2(𝑊𝑖(𝑥)𝑋𝑖

2𝑣) = 𝑋𝑖
2(𝛾(𝛾 + 𝛽 − 2)𝑑𝛾+𝛼−2) 

 = 𝛾(𝛾 + 𝛽 − 2)(𝛾 + 𝛼 − 2)(𝛾 + 𝛼 + 𝛽 − 4)𝑑𝛾+𝛼−4|𝑋𝑖𝑑|
2. 
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By putting back 𝛾 = −
𝛽+𝛼−4

2
 we have  

 

 𝛾 + 𝛽 − 2 =
𝛽−𝛼

2
, 

 𝛾 + 𝛼 − 2 = −
𝛽−𝛼

2
, 

 𝛾 + 𝛼 + 𝛽 − 4 =
𝛽+𝛼−4

2
. 

 

Then  

 𝑋𝑖
2(𝑊(𝑥)𝑋𝑖

2𝑣) = (
𝛽+𝛼−4

2
)
2

(
𝛽−𝛼

2
)
2
𝑑𝛼−4|𝑋𝑖𝑑|

2𝑣 

 = 𝐻(𝑥)𝑣. 
 

So we have the values of functions 𝑊(𝑥) and  

 

𝐻(𝑥) = (
𝛽 + 𝛼 − 4

2
)
2

(
𝛽 − 𝛼

2
)
2

Γ
𝛼−4
2−𝛽|𝑋𝑖Γ

1
2−𝛽|2, 

 

which allows to plug them in (5.36) yielding  

 

∑

𝑁

𝑖=1

(
𝛽 + 𝛼 − 4

2
)
2

(
𝛽 − 𝛼

2
)
2

∫
Ω

Γ
𝛼−4
2−𝛽|𝑋𝑖Γ

1
2−𝛽|2|𝑢|2𝑑𝑥 ≤∑

𝑁

𝑖=1

∫
Ω

Γ
𝛼
2−𝛽

|𝑋𝑖Γ
1
2−𝛽|2

|𝑋𝑖
2𝑢|2𝑑𝑥. 

 

Note that the sharpness of the constant was obtained by Kombe [68] in the 

setting of the Carnot groups. In this general case, the argument is the same.  

 

The following corollary can be also proved with the same approach as the 

above case by setting  

 𝑊(𝑥) =
Γ
𝛼+2𝑝−2
2−𝛽

|∇𝑋Γ
1
2−𝛽|2𝑝−2

  and  𝑣 = Γ
−
𝛽+𝛼−2

𝑝(2−𝛽). 

 

C o r o l l a r y  5 . 2 . 5  Let 𝛺 ⊂ 𝑀 be an admissible domain. Let 1 < 𝑝 < ∞ 

and 2 − 𝛽 < 𝛼 < 𝑚𝑖𝑛{(𝛽 − 2)(𝑝 − 1), (𝛽 − 2)}. Then for all 𝑢 ∈ 𝐶0
∞(𝛺\{0}) we 

have 

  

 ∫
𝛺

𝛤
𝛼+2𝑝−2
2−𝛽

|𝛻𝑋𝛤
1
2−𝛽|2𝑝−2

|ℒ𝑢|𝑝𝑑𝑥 ≥ 𝐶(𝛽, 𝛼, 𝑝)𝑝 ∫
𝛺
𝛤
𝛼−2

2−𝛽|𝛻𝑋𝛤
1

2−𝛽|2|𝑢|𝑝𝑑𝑥, (5.40) 

 

where 𝐶(𝛽, 𝛼, 𝑝):=
(𝛽+𝛼−2)

𝑝

(𝛽−2)(𝑝−1)−𝛼

𝑝
 is sharp. 

R e m a r k  5 . 2 . 6  Note that Lian [79] presented the sharpness of the constant 

appearing in (5.40) in the case of the Carnot groups.  
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CONCLUSION 

In this PhD thesis, we have presented the new significant results to the 

homogeneous groups, as well as numerous supporting results we believe are 

interesting and important in their own right.  

 Let us review the establishedfb results in this dissertation: 

In the first direction, where we study the geometric subelliptic inequalities, we 

presented 𝐿2 and 𝐿𝑝 versions of the (subelliptic) geometric Hardy inequalities in 

half-spaces and convex domains on general stratified groups. As a consequence, we 

have derived the Hardy-Sobolev inequality in the half-space on the Heisenberg 

group. Moreover, the geometric Hardy inequality on the starshaped sets is 

established.  

In the second direction, where we focus on the horizontal subelliptic 

inequalities, we established the version of horizontal weighted Hardy-Rellich type 

inequalities on the stratified Lie groups [80], as the result of this inequality Sobolev 

type spaces are defined on stratified Lie groups and the embedding theorems are 

proved for these functional spaces [81-82]. Also, we have obtained the subelliptic 

Picone type identities, as a result, we proved the Hardy and Rellich type inequalities 

for the anisotropic 𝑝 -sub-Laplacians [83]. Moreover, analogues of Hardy type 

inequalities with multiple singularities and many-particle Hardy type inequalities are 

obtained on the stratified groups. 

 In the third direction, where we investigate on the subelliptic inequalities with 

the sub-Laplacian fundamental solution, we obtained the generalised weighted 

𝐿𝑝 -Hardy, 𝐿𝑝 -Rellich, and 𝐿𝑝 -Caffarelli-Kohn-Nirenberg type inequalities with 

boundary terms on the stratified groups. As consequences, most of the Hardy type 

inequalities and the Heisenberg-Pauli-Weyl type uncertainty principles on the 

stratified groups are recovered. Moreover, a weighted 𝐿2-Rellich type inequality with 

the boundary term is obtained. We also present Hardy and Rellich inequalities for the 

sub-Laplacians in terms of their fundamental solutions on the quaternion Heisenberg 

group. 

In the fourth direction, we established the weighted anisotropic Hardy and 

Rellich type inequalities with boundary terms for general (real-valued) vector fields. 

As consequences, we derive new as well as many of the fundamental Hardy and 

Rellich type inequalities which are known in different settings [84-87]. 
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